求函数y=[sin2x+sin(2x+π/3)]/[cos2x +cos(2x+π/3)]的最小正周期

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:57:36
求函数y=[sin2x+sin(2x+π/3)]/[cos2x +cos(2x+π/3)]的最小正周期
x){igS7TFgUhI uAXb m ׌}>ٜ]tgs$S4;jUGQt6<ٽƸuقDJ@T”5#T! 5?|B5  E5KUmI:E:Q'(Y"l o<|]ㆦJ[]$4!]#\2 Y

求函数y=[sin2x+sin(2x+π/3)]/[cos2x +cos(2x+π/3)]的最小正周期
求函数y=[sin2x+sin(2x+π/3)]/[cos2x +cos(2x+π/3)]的最小正周期

求函数y=[sin2x+sin(2x+π/3)]/[cos2x +cos(2x+π/3)]的最小正周期
sin(2x+π/3)=1/2*sin2x+√3/2*cos2x
所以sin2x+sin(2x+π/3)=3/2*sin2x+√3/2*cos2x
=√3(√3/2*sin2x+1/2*cos2x)
=√3sin(2x+π/6)
同理cos2x +cos(2x+π/3)=√3cos(2x+π/6)
所以y=sin(2x+π/6)/cos(2x+π/6)=tg(2x+π/6)
最小正周期T=π/w=π/2

化简。y=-sin(2x+π/6)/sin(2x-π/3)
所以 T=π