如图1,在RT三角形ABC中,角BAC=90,AD垂直BC于点D,点O是AC边上一点,连接BO交AD于F,OE垂直OB交BC边1.证明△ABF相似△COE2.当当O为AC边中点,且AB=AC,如图2,求证:BF-2OF3.当O为AC边中点,且AC\AB=2,如图3,求OF\OE的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 08:50:11
如图1,在RT三角形ABC中,角BAC=90,AD垂直BC于点D,点O是AC边上一点,连接BO交AD于F,OE垂直OB交BC边1.证明△ABF相似△COE2.当当O为AC边中点,且AB=AC,如图2,求证:BF-2OF3.当O为AC边中点,且AC\AB=2,如图3,求OF\OE的
xWNG~mHF|cU@j68CCJ"$" iā^16<뵝+^gfv׋q$ԋFvgsw938}~>gɢBk7a^#]Ȱ5_ܜ;0Dxzq$b\^z Z"1& -Z;7kwwz ub*!;HXr oS E"6^́ "w(AOq"TX\u0}M/}7lci`=[fYPuEwL>8U!]jfF;70s-~}:.IP:59c(3XjJi| +z,f&l$‘L8fj8ٱWhlL#cfˤ} Rj&=f\ _(%*G0IT_ZϨ70]yfIyCFmu&_ _]]z 쁄3K#KXELFAFL^{JE\2j KP`y&>Mf rE/x㌹eDb͕W.K'iaEWs0ZO!W)6 m|Q9)F')GxmwBBd3"USNI\*^VC/n9 $!1DhXS0LD4SJU` -c Y.],B mS'>Lr!hb_}D )ʻ:/ _]\jl;Bca. gt*A!={\HBmN y ~6gIY"Rhl4u6`goB81UO@NKT3IGhSFhb P(ԍI{~/[U<iH?L{yW%@}9^!6!ČKV+{2a/F0Ok7#<(#q_r+;nrF|ݓ H*/6썿/̤6 |)ԕ eBOj9 7iE^ r`G5 J$%Blj latE xh5 )9E+$HMx@vTKWx$*ǁP;;-nG"a yd'_/v +n {ީDŽT5&ѮL3qrZzx=H9,뚙4S&^Jmk/o~Ԟ/@huGa:;z4|,&~kM.!N!q뭝7ЙBj|`*9gk` ~hsDѵ:;=qB$ "ydd_u>cO@i]Ua؏f]t=[ hWy pv!x;z }np9-b_&zJrz"8"9!| et5&>D{˛<(\I[԰!pP46+[/oJj '{~{m ܋kQ%*"kA֢rQ7xס#) #c7.Uz Gx `MwAWY b$4=̭Bh38~$I7)`IF

如图1,在RT三角形ABC中,角BAC=90,AD垂直BC于点D,点O是AC边上一点,连接BO交AD于F,OE垂直OB交BC边1.证明△ABF相似△COE2.当当O为AC边中点,且AB=AC,如图2,求证:BF-2OF3.当O为AC边中点,且AC\AB=2,如图3,求OF\OE的
如图1,在RT三角形ABC中,角BAC=90,AD垂直BC于点D,点O是AC边上一点,连接BO交AD于F,OE垂直OB交BC边
1.证明△ABF相似△COE
2.当当O为AC边中点,且AB=AC,如图2,求证:BF-2OF
3.当O为AC边中点,且AC\AB=2,如图3,求OF\OE的值
最好是3种方法

如图1,在RT三角形ABC中,角BAC=90,AD垂直BC于点D,点O是AC边上一点,连接BO交AD于F,OE垂直OB交BC边1.证明△ABF相似△COE2.当当O为AC边中点,且AB=AC,如图2,求证:BF-2OF3.当O为AC边中点,且AC\AB=2,如图3,求OF\OE的
(1)∵AD⊥BC
∴∠DAC+∠C=90度
∵∠BAC=90°
∴∠BAF=∠C
∵OE⊥OB
∴∠BOA+∠COE=90°
∵∠BOA+∠ABF=90°
∴∠ABF=∠COE
∴△ABF∽△COE .
(2)作OG⊥AC,交AD的延长线于G
∵AC=2AB,O是AC边的中点
∴AB=OC=OA
由(1)△ABF∽△COE
∴△ABF≌△COE,
∴BF=OE.
(3)解法1:
∵∠BAD+∠DAC=90°, ∠DAB+∠ABD=90°
∴∠DAC=∠ABD
又∠BAC=∠AOG=90°, AB=OA
∴△ABC≌△OAG
∴OG=AC=2AB
∵OG⊥OA
∴AB∥OG
∴△ABF∽△GOF
∴ OF/BF=OG/AB
OF/OE=OF/BF=OG/AB=2.
(3)解法2:
过O作AC垂线并交BC于H
∵∠AFB=∠OEC
∴∠AFO=∠HEO
∵∠BAF=∠ECO
∴∠FAO=∠EHO
∴△OEH∽△OFA
∴OF:OE=OA:OH=2:1
故 OF:OE=2
希望对你有所帮助,祝你学习进步!

1、
∵ AD⊥BC
∴ ∠ BAD=∠BCA
∵ AD⊥BC,BO⊥OE
∴ ∠ ABF=∠COE
∴ ΔABF∽ΔCOE
2、∵AC:AB=2
∴ ∠ABF=∠COE=∠BOA=45°
O为AC边中点,即OC=AB
在三角形OEC中,作EM⊥OC,交点为M
在三角形ABF中,作FP⊥AB交于AB于P
在三角...

全部展开

1、
∵ AD⊥BC
∴ ∠ BAD=∠BCA
∵ AD⊥BC,BO⊥OE
∴ ∠ ABF=∠COE
∴ ΔABF∽ΔCOE
2、∵AC:AB=2
∴ ∠ABF=∠COE=∠BOA=45°
O为AC边中点,即OC=AB
在三角形OEC中,作EM⊥OC,交点为M
在三角形ABF中,作FP⊥AB交于AB于P
在三角形AFO中,作FN⊥AO交于AO于N
则ΔBPF ≌ΔOME
∴ OE:OF=BF:OF
∵ ΔBPF∽ΔFNO
∴ BF:OF=PF:NO=PF:FN
∵ ∠PAF=∠ACB
∴ PF:FN=AB:AC=1:2
∴ OF:OE=2
3、OF:OE=(n^3)/4
证明:
在三角形OEC中,作EM⊥OC,令EM=X,AB=a
作FN⊥AO交于AO于F
则CM=nX,EC=√(n^2+1)X
OM=OC-CM=nX/2-nX
BE=BC-CE=√(n^2+1)a-√(n^2+1)X
OB=√(AB^2+OA^2)=√(n^2+4)/2
由OE^2=BE^2-OB^2=OM^2+EM^2解得:
X=an^2/[2(n^2+2)]
∵ ΔABF∽ΔCEO
∴ OE:BF=OC:AB=EC:AF,可推得:BF:OF=AB:FN-1
BF=OE*EC:AF
∴ OE:OF=(AB:FN)*(AF:EC)-AF:EC
∵ AF:FN=BC:AC
∴ OE:OF=(BC:AC)*(AB:EC)-AF:EC=(AB:AC)*(BC:EC)-AF:EC
∵ AF:EC=AB:OC
∴ OE:OF=(AB:AC)*(BC:EC)-AB:OC
=(1:n)*(BC:EC)-2/n
∵ EC:BC=EM:AB=X:a
∴ OE:OF=(1:n)*(a/X)-2/n
将X=an^2/[2(n^2+2)]代入上式可得;OF:OE=n^3/4
当n=2时,OF:OE=8/4=2

收起

.当O为AC边中点,AC:AB=n时,请直接写出OF:OE的值 1、 ∵ AD在三角形OEC中,作EM⊥OC,令EM=X,AB=a 作FN⊥AO交于AO于F 则CM=

1.证明:∠BOE=90° ,则∠COE+∠AOB=90° ;
又∠ABF+∠AOB=90° ,得:∠COE=∠ABF;
又∠C=∠BAF(均为∠ABD的余角),故:△ABF相似△COE.
2.证明:AB=AC,AD垂直BC,则BD=CD.
延长FO到M,使OM=OF,连接CM;又OA=OC,∠AOF=∠COM.
则⊿AOF≌ΔCOM,得∠AFO=∠M.

全部展开

1.证明:∠BOE=90° ,则∠COE+∠AOB=90° ;
又∠ABF+∠AOB=90° ,得:∠COE=∠ABF;
又∠C=∠BAF(均为∠ABD的余角),故:△ABF相似△COE.
2.证明:AB=AC,AD垂直BC,则BD=CD.
延长FO到M,使OM=OF,连接CM;又OA=OC,∠AOF=∠COM.
则⊿AOF≌ΔCOM,得∠AFO=∠M.
故:AF∥CM,BF/FM=BD/DC=1,得BF=FM=2OF.
3.证明:设AB=1,则AC=2,BC=√5.
由面积关系知,BC*AD=AB*AC,√5*AD=1*2,AD=√5/2;CD=√(AC^2-AD^2)=√11/2;BD=√5-√11/2.
⊿ABF∽⊿COE,则OF/OE=AB/CO=1,故⊿ABF≌ΔCOE,BF=OE.
作OH垂直BC于H,AO=CO,则DH=CH=√11/4,AD∥OH.
故:OF/OE=OF/BF=DH/BD=(√11/2)/(√11/4)=2/1=2.

收起

已知:如图,在Rt三角形ABC中,角C=90度,角BAC=30度,求证:BC=1/2AB 已知如图在Rt三角形ABC中角C=90° AD平分角BAC并且AD=BD求证AC=2分之1 AB 如图在rt三角形abc中 角c= 90度角ABC=30度AD平分角BAC BD平行AC求证AE=BE如图在rt三角形abc中 角c= 90度角ABC=30度AD平分角BAC BD平行AC(1)求证AE=BE(2)求证BC+CE=DE 如图在rt三角形abc中,ab等于ac,角bac等于90度,d为bc的中点. 1已知在Rt三角形ABC角C=90度AC=m角BAC=a(阿尔法)求三角形ABC的面积(用阿尔法的三角比及m表示)2如图在三角形ABC中,角B=45度,角BAC=105度,BC=40求S三角形ABC 已知,如图,在Rt三角形ABC中,角BAC=90,D是BC上一点,角BAD=2角C,求证AD=AB 如图,在RT三角形ABC中,角C等于90度,角B=30度,AD平分角BAC,求证AC=二分之一AB 如图,在RT三角形ABC中,较BAC=90度,D是BC上得一点,AD=AB,求证:角BAD=2角C 如图 在rt三角形abc中 角c 90度,AD是∠BAC的平分线AB=8,DC=2 如图在RT三角形abc中,角bac=90度,ad垂直于bc于点d,o为ac中点 如图,在Rt三角形ABC中, 如图,在RT三角形ABC中 如图,在Rt三角形ABC中, 如图,在Rt三角形ABC中 如图在RT三角形ABC中, 如图,在三角形abc中,∠acb与∠abc的角平分线相交于点o.1 若∠bac=Rt∠,求∠boc的的度数 如图在rt三角形abc中角bac=90度ad垂直bc于d,de垂直ac于点e,df垂直ab于f说明三角形aef相似三角形abc 如图,在rt三角形abc中,角acb=90度,角bac=30度,角acb的平分线cp交ab于d,若角apb=45度,cb=1,求pb,如16题图.