如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:41:27
如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时
xTmoV+h&vT3I6g76hFysu3Ok$C7nߤ4=h33]U?^3)]MWe7oI ^))J鴲 zpROte=讜i{gX]8-l8>0c]]!4c^ X )-hGiHIh_@QxֺW'w۴x f hl@ E -ĉuZ-ez3>GP{0h} >RwƝD>8h}C &iiwHk& l\K`NO;5͕ir8 7Jʃ\F[ai{16讇k-Z0ϝfQ| ?hUёGœsBu`&P ÓrTT]ޠilGVţ_0H׮_hU0HFZM,Y~VyE3Ui}dʛ(*J3 nw 1kUqBd(N0AzoOt& -03#)'~gܺdMyu&7֗g3}ʲ^"e|"Yۄ=w>u]2Nw2DZ쭻8(,&e,JZ+Hڊgvm9a˳e^xǞ,)<lDIB\x!"q%'[oqؖg!rA.`׿̺gDd^vD$ `%qo "K8-Ǖ=a{ ]KKɟ-FG

如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时
如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速
运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.

如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时
⑵∵RTΔAPD∽RTΔACB(公共角),∴PA/PD=AC/BC=3/4,∴PD=4/3t,
BQ=8-2t,当PD=BQ,即4/3t=8-2t,t=2.4,
这时:CQ=4.8,PC=6-2.4=3.6,PD=3.2,
PQ=√(PC^2+CQ^2)=6,PQ≠PD,
∴不存在t的值,使四边形PDBQ为菱形.

如图,在Rt△ABC中,∠C等于90°,图中有三个正方形,证明a=b+c? 如图,在Rt△ABC中,角C=90° 已知在Rt△ABC,∠C=90°,AC=30cm,BC=40cm.(1)如图(1),四边形EFGH是Rt△ABC的内接正方形(1)如图(1),四边形EFGH是Rt△ABC的内接正方形,求内接正方形的边长;如图(2),若在Rt△ABC中并排放置两个三角形, 根据下列条件求sinA,cosA,tanA的值.(1)如图,Rt△ABC中,∠C=Rt∠,AC=3,AB=5.2)如图,在Rt△ABC中,∠C=Rt∠,根据下列条件求sinA,cosA,tanA的值.(1)如图1,在Rt△ABC中,∠C=Rt∠,AC=3,AB=5;(2)如图2,在Rt△ABC中,∠C=Rt∠,AC 如图,在Rt△ABC中,∠C=90°,sinA=0.7,求cosA、 tanA的值. 如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值 如图,在Rt△ABC中,∠C=90°,AB=5,S△ABC=6,求△ABC的内切圆半径r 如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,求AB的长(2)在Rt△ABC中,角C=90°,AB=41,BC40,求AC .如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,求AB的长(2)在Rt△ABC中,角C=90°,AB=41,BC=40,求AC 如图,在四边形BCDE中,∠C=∠BED=90°,∠B=60°,延长CD,BE,得到Rt△ABC,已知CD=2,DE=1,求Rt△ABC的面 如图,在四边形BCDE中,∠C=∠BED=90°,∠B=60°,延长CD,BE,得到Rt△ABC,已知CD=2,DE=1,求Rt△ABC的面积 如图,在RT△ABC中,∠C=90°,AC=BC,BD是∠ABC的平分线,试说明AB=BC+CD 如图在Rt△ABC中,∠C=90°,BC分之AC=12分之5,若AB=26,求ABC的面积 如图,在Rt△ABC中,CB=AC,∠C=90°,∠1=∠2,AE⊥BE.求证AD=2BE. 已知:如图 ,在RT△ABC中,∠C=90°,∠BAC=30°.求证:BC=1/2AB 如图,已知在Rt△ABC中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,求AC的长. 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,并且AD=BD,求证AC=1/2AB 如图 在rt△abc中 ∠c 90° tanA=1/2 求∠b的正弦 余弦值 如图 在rt△abc中 ∠c 90° tanA=1/2 求∠b的正弦 余弦值