1/1*2+1/2*3+1/3*4……1/1888*1889
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 22:31:55
x)372672Z&PBHX$LΆh^l';^6N~ɞOv=m_-g Erь<|]ީ@{fM}h.Ъ{:<# 3L@<=Rs];J@%Pb!T p@ +
yR
1/1*2+1/2*3+1/3*4……1/1888*1889
1/1*2+1/2*3+1/3*4……1/1888*1889
1/1*2+1/2*3+1/3*4……1/1888*1889
这是一道流传了几十年的传统题目,很简单的:
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+.(1/1887-1/1888)+(1/1888-1/1889)
=1-1/1889
=1888/1889
1/(1-1/2)/(1-1/3)/(1-1/4)/……/(1-1/2012)
(1/2+1/3+1/4+……+1/2013)(1+1/2+1/3+1/4+……+1/2012)-(1+1/2+1/3+……+1/2013)(1/2+……+1/2012)
(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+………+(1/1+2+3+………+100)
1+2+3+4+……+10000
1×2×3×4……×101
1+2+3+4……+101
2(3+1)(3^2+1)(3^4+1)……(3^32+1)+1
(1-1/2)×(1-1/3)×(1-1/4)……×(1-1/2008)计算方法
200×(1-1/2)×(1-1/3)×(1-1/4)×……×(1-1/100)=?
计算:(1-1/2)*(1-1/3)*(1-1/4)*……*(1-1/10).
(1/2+1/3+1/4+1/5+……+1/2007)*(1+1/2+1/3+1/4+……+1/2006)………………计算:(1/2+1/3+1/4+1/5+……+1/2007)*(1+1/2+1/3+1/4+……+1/2006)-(1+1/2+1/3+1/4+……+1/2007)*(1/2+1/3+1/4+^+1/2006)要求简算
求和:1/1×2+1/2×3+1/3×4+……+1/n(n+1)
求证:1/2^3 +1/3^3 +1/4^3 +……+1/(n+1)^3
求证:1/2^3 +1/3^3 +1/4^3 +……+1/(n+1)^3
1+2+3+4+5…………+100000000
1/1+2+1/1+2+3+1/1+2+3+4+…+1/1+2+3+…+50
1+2/2*1+2+3/2+3*1+2+3+4/2+3+4*……*1+2……+2001/2+3+……+2001=
|1/2-1|+|1/3-1/2|+|1/4+1/3|+…+|1/30-1/29|