设等差数列的公差d为2,前n项和为Sn,则lim(n→∞)(an^2-n^2)/Sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 16:44:54
设等差数列的公差d为2,前n项和为Sn,则lim(n→∞)(an^2-n^2)/Sn
xRAJ@,0$qY 7~^Jb[)ER*"*؆d&*WgRMޛy7+`=6w);{E$UGhCC 筹ە%vtLm0w&hhn~X,*P4D :sij*IK7TZe+MQp5֬'_I)|)QhXh*Z,ä3p`<<*rKq _~GiX;5ީ&/7ySvŪ!k qPx$i7xO7y

设等差数列的公差d为2,前n项和为Sn,则lim(n→∞)(an^2-n^2)/Sn
设等差数列的公差d为2,前n项和为Sn,则lim(n→∞)(an^2-n^2)/Sn

设等差数列的公差d为2,前n项和为Sn,则lim(n→∞)(an^2-n^2)/Sn
an=a1+2(n-1)=a1+2n-2;Sn=na1+n(n-1)2/2=na1+n^2-n
(an^2-n^2)/Sn=[(a1+2n-2)^2-n^2]/(na1+n^2-n)=[(a1-2)^2+4(a1-2)n+3n^2]/(na1+n^2-n)
上下同除n^2得[(a1-2)^2/n^2+4(a1-2)/n+3]/(a1/n+1-1/n),所以lim=3/1=3

an =a1 + 2(n-1) = 2n + (a1-2)
Sn = na1 + n(n-1) = n^2 + (a1-1)n
lim(an^2-n^2)/Sn=lim[3*n^2 +4(a1-1)n + (a1-2)^2 ]/[n^2 + (a1-1)n ]
= lim(3*n^2)/n^2
= 3
n趋于无穷大时,看最高此项的系数比值即为极限值

设公差为d的等差数列{an}的前n项和为Sn,若a1=1,-2/17 设等差数列{an}公差d是2,前n项和为Sn,则lim(an^2-n^2)/Sn 设等差数列{an}公差d是2,前n项和为Sn,则lim(an^2-n^2)/Sn 设等差数列的公差d为2,前n项和为Sn,则lim(n→∞)(an^2-n^2)/Sn 设等差数列an的公差d为2,前n项和为Sn,则lim(an^2-n^2)/Sn=? 设等差数列{an}的公差为d,若它的前n项和Sn=-n^2,则an=-2n+1,d=-2 设Sn为等差数列{an}的前n项和,S5=10,S10=-5,则公差d=? 设等差数列{an}的前n项和为Sn 已知S3=S12 则当公差d 设数列{an}的前n项和为Sn,若{an}和{根号sn+n}都是公差为d的等差数列,则a1= 设等差数列{an}的公差为d,如果前n项和Sn=-n^2,那么an=?,d=? 设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn(Ⅱ) 证明:n∈N*,Sn,Sn+1,Sn+2不构成等比数列. 谢谢)在等差数列{an}中,设公差为d,若前n项和Sn=-n²;,则{an}的通项公式和公差分别 设等差数列an的公差为d不等于0,前n项和为Sn.则Sn为递增数列的充分必要条件是 设Sn为等差数列{an}的前n项和,已知a9=-2,S8=2 (1)求首项和公差 (2)当n为何值,Sn最大?设Sn为等差数列{an}的前n项和,已知a9=-2,S8=2 (1)求首项a1和公差d的值 (2)当n为何值,Sn最大? 已知等差数列an的公差为d,前n项和Sn=-n^2,则通项公式为 已知等差数列an的首项a1>0,公差d>0,前n项和为Sn已知等差数列an的首项a1>0,公差d>0,前n项和为Sn,设m.n.p属于N*,且m+n=2p 求证(1)Sn+Sm大于等于2Sp(2)Sn*Sm≤(Sp)^2 等差数列{an}的前n项和为Sn,公差d 等差数列{an}前n项和为Sn,且Sn=3n^2+n 求公差d