已知x,y∈正实数,且x+y=2,求y/(x+2)+x/(y+2)的最值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 21:24:32
已知x,y∈正实数,且x+y=2,求y/(x+2)+x/(y+2)的最值
xj1ߦd T8b@EHvCb F]X]d +gDY {wr%q:-V<et& U1 0'H@=TVd/CN55Z.FBhg,|ZfW H0wj#j1͍ Įa=zE'RȌ1 ^*eAi9o6/~,(vPU8@9@)䪊,gdfKWw/f oj%

已知x,y∈正实数,且x+y=2,求y/(x+2)+x/(y+2)的最值
已知x,y∈正实数,且x+y=2,求y/(x+2)+x/(y+2)的最值

已知x,y∈正实数,且x+y=2,求y/(x+2)+x/(y+2)的最值
y/(x+2)+x/(y+2)
=(x·(x+2)+y·(y+2))/((x+2)·(y+2))
=(x²+y²+2(x+y))/(xy+2(x+y)+4)
=((x+y)²-2xy+2(x+y))/(xy+2(x+y)+4)
=(8-2xy)/(8+xy)
=(-16-2xy+24)/(8+xy)
=-2+24/(8+xy)
∵x,y>0,x+y=2
∴0<xy≤1
∴2/3≤y/(x+2)+x/(y+2)<1
所求有最小值2/3

y/(x+2)+x/(y+2)
=(x·(x+2)+y·(y+2))/((x+2)·(y+2))
=(x²+y²+2(x+y))/(xy+2(x+y)+4)
=((x+y)²-2xy+2(x+y))/(xy+2(x+y)+4)
=(8-2xy)/(8+xy)
=(-16-2xy+24)/(8+xy)
=-2+24/(8+xy)
∵x,y>0,x+y=2
∴0<xy≤1
∴2/3≤y/(x+2)+x/(y+2)<1
最小值2/3