在三角形ABC中,证cos2A/a平方-cos2B/b平方=1/a平方-1/b平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 19:03:09
在三角形ABC中,证cos2A/a平方-cos2B/b平方=1/a平方-1/b平方
xN0_%cb{#

在三角形ABC中,证cos2A/a平方-cos2B/b平方=1/a平方-1/b平方
在三角形ABC中,证
cos2A/a平方-cos2B/b平方=1/a平方-1/b平方

在三角形ABC中,证cos2A/a平方-cos2B/b平方=1/a平方-1/b平方
cos2A=2(cosA)^2-1
cos2B=2(cosB)^2-1
所以cos2A/a^2-cos2B/b^2-1/a^2+1/b^2
=[2(cosA)^2-1-1]/a^2-[2(cosB)^2-1-1]/b^2
=2[(cosA)^2-1]/a^2-2[(cosB)^2-1]/b^2
=-2(sinA)^/a^2+2(sinB)^2/b^2
因为sinA/a=sinB/b
所以(sinA)^/a^2=(sinB)^2/b^2
所以-2(sinA)^/a^2+2(sinB)^2/b^2=0
所以cos2A/a^2-cos2B/b^2-1/a^2+1/b^2=0
所以cos2A/a^2-cos2B/b^2=1/a^2-1/b^2

∵cos2A=1-2(sinA)^2
cos2B=1-2(sinB)^2
sinA/a=sinB/b
左边=(1-2(sinA)^2)/a2-(1-2(sinB)^2)/b2=(1/a2-1/b2)+(-2(sinA)^2/a2+2(sinB)^2/b2)=1/a2-1/b2=右边
得证