关于分式的加减.已知:1/x(x+1)=(1/x - 1/x+1)*1,1/x(x+2)=(1/x - 1/x+2)*1/2,1/x(x+3)=(1/x - 1/x+3)*1/3,…………1/x(x+10)=(1/x - 1/x+10)*1/10则:1/(x+m)(x+n)=_________________;探究:若|ab-2|+(b-1)²=0,试求1/ab + 1/(a+1)(b+

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 15:11:31
关于分式的加减.已知:1/x(x+1)=(1/x - 1/x+1)*1,1/x(x+2)=(1/x - 1/x+2)*1/2,1/x(x+3)=(1/x - 1/x+3)*1/3,…………1/x(x+10)=(1/x - 1/x+10)*1/10则:1/(x+m)(x+n)=_________________;探究:若|ab-2|+(b-1)²=0,试求1/ab + 1/(a+1)(b+
xTn@?UwU4 !(DmҒ B*MGʻ mқTRٙsfg<2qzHa8eo)z9JzZk#=+g#Hd8IhNx8d9)ߞ|ëٻ FD)# GΆ9[M]f+Hj8R,>1wv2I)A<ĒO[_@?}StIn[!UTB^wCuMHO+wPw Kf Bz_ht#[y8 X~{ FO+ R1o-VM&USFu} 5eAVcrKF bGN%> ^]@,%m;]7|ei

关于分式的加减.已知:1/x(x+1)=(1/x - 1/x+1)*1,1/x(x+2)=(1/x - 1/x+2)*1/2,1/x(x+3)=(1/x - 1/x+3)*1/3,…………1/x(x+10)=(1/x - 1/x+10)*1/10则:1/(x+m)(x+n)=_________________;探究:若|ab-2|+(b-1)²=0,试求1/ab + 1/(a+1)(b+
关于分式的加减.
已知:1/x(x+1)=(1/x - 1/x+1)*1,
1/x(x+2)=(1/x - 1/x+2)*1/2,
1/x(x+3)=(1/x - 1/x+3)*1/3,
…………
1/x(x+10)=(1/x - 1/x+10)*1/10
则:1/(x+m)(x+n)=_________________;
探究:若|ab-2|+(b-1)²=0,试求1/ab + 1/(a+1)(b+1) + 1/(a+2)(b+2) + 1/(a+3)(b+3) +……+ 1/(a+2007)(b+2007) + 1/(a+2008)(b+2008) 的值.

关于分式的加减.已知:1/x(x+1)=(1/x - 1/x+1)*1,1/x(x+2)=(1/x - 1/x+2)*1/2,1/x(x+3)=(1/x - 1/x+3)*1/3,…………1/x(x+10)=(1/x - 1/x+10)*1/10则:1/(x+m)(x+n)=_________________;探究:若|ab-2|+(b-1)²=0,试求1/ab + 1/(a+1)(b+
1/(x+m)(x+n)=[1/(x+m)-1/(x+n)]*1/(n-m)
|ab-2|+(b-1)²=0
ab-2=0,b-1=0
b=1
a=2
1/ab + 1/(a+1)(b+1) + 1/(a+2)(b+2) + 1/(a+3)(b+3) +……+ 1/(a+2007)(b+2007) + 1/(a+2008)(b+2008)
=1/2+1/6+1/12+1/20+……+1/2009*2010
=1-1/2+1/2-1/3+1/3-1/4+……+1/2009-1/2010
=1-1/2010
=2009/2010

第一题是 |1/(x+m) - 1/(x+n)| * |m-n| 这个你把答案通分一下就知道跟那个乘积一样了
第二题是,如果满足上面那个式子=0,必须绝对值里的东西和平方里的东西都=0,因为这两个东西都是非负的,所以a=2,b=1
于是要求的式子变成:
1/1*2 + 1/2*3 + 1*3*4 + ... + 1/2009*2010
= (1/1 - 1/2) +...

全部展开

第一题是 |1/(x+m) - 1/(x+n)| * |m-n| 这个你把答案通分一下就知道跟那个乘积一样了
第二题是,如果满足上面那个式子=0,必须绝对值里的东西和平方里的东西都=0,因为这两个东西都是非负的,所以a=2,b=1
于是要求的式子变成:
1/1*2 + 1/2*3 + 1*3*4 + ... + 1/2009*2010
= (1/1 - 1/2) + (1/2 - 1/3) + ... + (1/2009 - 1/2010) (中间的都抵消了)
=1-1/2010
=2009/2010

收起