数学高一公式求高一的数学公式.一些重要的公式定理(可以的话再来几道例题.)希望各位大哥能帮我找一下.急!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 04:44:16
数学高一公式求高一的数学公式.一些重要的公式定理(可以的话再来几道例题.)希望各位大哥能帮我找一下.急!
x[{oɑ*s8 y8إ"?.erJ?P$(K"%˖Do g8_~U3|؛۵zuuuuUu?;KR֕(> ּ^&bWt{}6Y )i;dNf] $IYV ,^Z=9h*GxRU}敮B`!fu޻ ;b8' E˝?&Skijk<򙴝L]=\؛&缉29O挭DPi)%(y_2<8 M/}.v4,!X4dUa5c2ĠE7p`<"[mOLR +m&BpETlQmv|icDؗx)']VIs:EJ!}b)W%ô|F|a3 %ac.X?!t/'rg`],3,gnc{n|.Wש})r [tŁ'k%17 iΪ^\kor Esf<0{Uд-bV\IC#D=ʹi{7*,fO^F u頄v>M ;tFiEM&Mh* a<]~ļIg%(džW+C$3/m74O ".9έ:%x0huiɿ`:Cx |vL/]JH ̙́sC5TΝ4 |:t :3%Aߟb _']<"KEb8]pd_( 糂@#B{w;G ;H;{-P|+~ 9ϏCX/w5,pxu٬?#swt'\8( YMTY/8%5&9jLK-^=JFH^LyUe9pz44oIpv}MQ꠳ uN&*PMN<D(:@ɠ8kŸ> |v?Z햡SsFؼ-ooNv(ZYV".$ TI|>q{&_ »_L4:G-ghVW1& f%4':/|4,y5>k1oeJ8I;Dl;Ps~}~!OŅq-CyM9Y_aeX+cjyq"|<'Ҕ`g,\V_Q{/1%$^Ӆt̷KUQ"bݦhks¢ q 8+N-olelPq!WP;(6uFWmSPƀRG2FY[c0y^|ͳ+7{!<; orq>}Ԃ.}'ؼnlX22IO)ȲsC5u9@ړǔ8vM.$8y:e5URo% ̿Li(I3Y]aPIg]{~:N1Flu%mX(?|Cn(O_)N?6ZY䕢qC,h ӝ"dxРM2ξHATA;_8B9TĔ7gt}]d*Țט]UPND$OOYͅ)7hH""\mvMpIp*ה: B5 Ugd)Eo{d UKk"Th΅b7 ΦsU6}Ƚ0 n$lE6J&W֩NC:aR;6+2,~ "$sa jENhk4}!aU1wS$u9La&gia5׽͕'S{9ScjUQ%90@lP5c)Tvq.. TAx7"lR E} YĜVj'p g c"-Q;LC!n $Jfwc{[w| a*-yuI"Hq@>e, {ZgTqdݔKج!TtTb9.TvES4,A"5IN; s%?u(FȬhTa5h *Һ6$EQ`wBk {w(5H?:4SFukXhqR6-%FbLNppJËnbT&d}<{ռ߅8gA:@{ 4gtʩYrG ? GO8I( : zn9T޵_c3x̬=YdzpQk@ͽ.#8>J !d.l]7̟N-I\0Sm"ZjvOJ,3Rي/5ZG98X4NTG݆tf6`3ꨮ?r? jU"V[1!dKv9T0%$8mh)AM-Ub6$O5(+]CzAm=fmO|o 7RUEL$|@>O? RX-('۩C؋ǸI,-f8 aAjhF>(P9Lذ*9Dޑ8)<զd5FHJYʯ8?fQhZ:UC D&P? _z /*|TfY}ݬXI #[?crǢ]SC!~J)Ziz"3 z 0RKHk4\[B"Z$tsg3zgK;=;o޻ sB.q<dk6yGFK)0 UYQE.u5s*n%޹4K*aW*M1Jg|,²ryPDz]@($̕ߞ݉#g@~KyŪEoڥB}"}k&Kcp}r%LL8 upԻ[:9k9?@,+C1>Sԫ"LLÏ{Wpj Mv3x9L9=}YJo t˭`}QV8f2ƽT?{7'fӌPwxh>ďh<2x(P7 *qAHhC}BqC?  ""CG~&N;g+N-O)Bd7H paRϠ0CDB\q*l!El|%>D&mK#ElQ!=l  = 3t{ Jr D#! } 5}{4lDXD ovqF^ փxh20@@ 5dznp -Ee3a}1_Ɋi\"xwgy%,-ctݵ4JNmw{}3s '9{8L/{Œ؈rA>cf6cw}AE@ N{y6?mf+( J1G $1x2=t׈;s׼{y}τ*CL{ph$JHj$XY!1q$ ʼ:1~ν vSʱJD%Gx6;R#*4* Ǻ@r;4ͤukG!ƃaͦ! xlȾ;\uu綵KQS3#p a$"Fb;Hb7½Qt3OoŧѧhG* 25<D #dSW9YFd$2jG&dtȺһny`_hѡ>1d;^S=cC|XEui;FyQf_PQ`YQyOb#.BpI=dTCZj9ﵳ9=Ϳ K8qHo, 0ix?/xfVg|DϏgm<h2IHVgE}s+"i>{@4<Q#WIFzc

数学高一公式求高一的数学公式.一些重要的公式定理(可以的话再来几道例题.)希望各位大哥能帮我找一下.急!
数学高一公式
求高一的数学公式.一些重要的公式定理(可以的话再来几道例题.)
希望各位大哥能帮我找一下.
急!

数学高一公式求高一的数学公式.一些重要的公式定理(可以的话再来几道例题.)希望各位大哥能帮我找一下.急!
一、集合与简易逻辑:
一、理解集合中的有关概念 (1)集合中元素的特征: 确定性 , 互异性 , 无序性 .
(2)集合与元素的关系用符号 , 表示.
(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 .
(4)集合的表示法: 列举法 , 描述法 , 韦恩图 .
(5)空集是指不含任何元素的集合.空集是任何集合的子集,是任何非空集合的真子集.
二、集合中元素的个数的计算: (1)若集合 中有 n个元素,则集合 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 .
三、若 ; 则 是 的充分非必要条件 ;
若 ; 则 是 的必要非充分条件 ;
若 ; 则 是 的充要条件 ;
若 ; 则 是 的既非充分又非必要条件 ;
四、原命题与逆否命题,否命题与逆命题具有相同的 ;
五、反证法:当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立,
步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确.
矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题.
适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时.
正面词语 等于 大于 小于 是 都是 至多有一个
否定
正面词语 至少有一个 任意的 所有的 至多有n个 任意两个
否定
二、函数
一、映射与函数:
(1)映射的概念:
(2)一一映射:
(3)函数的概念:
二、函数的三要素: , , .
(1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法: 含参问题的定义域要分类讨论; 对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定.
(3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;②逆求法(反求法):通过反解,用y来表示x,再由x的取值范围,通过解不等式,得出y的取值范围;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域.⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域.
三、函数的性质: 函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言.
判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法.
应用:比较大小,证明不等式,解不等式.
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系.f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数.
判别方法:定义法, 图像法 ,复合函数法 应用:把函数值进行转化求解.
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期.
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式.
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律.
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系数,要先提取系数.如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象.
(ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义.
对称变换 y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x) ,关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称.(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换.
五、反函数:
(1)定义:
(2)函数存在反函数的条件: ;
(3)互为反函数的定义域与值域的关系: ;
(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域).
(5)互为反函数的图象间的关系:
(6)原函数与反函数具有相同的单调性;
(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数.
七、常用的初等函数:
(1)一元二次函数: 一般式: ;对称轴方程是 ;顶点为 ;
两点式: ;对称轴方程是 ;与 轴的交点为 ;
顶点式: ;对称轴方程是 ;顶点为 ;
①一元二次函数的单调性:
②二次函数求最值问题:首先要采用配方法,
Ⅰ、若顶点的横坐标在给定的区间上,则 时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得; 时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;
Ⅱ、若顶点的横坐标不在给定的区间上,则 时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得; 时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;
有三个类型题型: (1)顶点固定,区间也固定.(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外. (3)顶点固定,区间变动,这时要讨论区间中的参数.
指数运算法则:
指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和01和00)是等比数列.
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列.
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等.关键是找数列的通项结构.
28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n
30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求
在解含绝对值的数列最值问题时,注意转化思想的应用.
六、平面向量
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量.
2. 加法与减法的代数运算:
(1) .
(2)若a=( ),b=( )则a b=( ).
向量加法与减法的几何表示:平行四边形法则、三角形法则.
向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);
+0= +(- )=0.
3.实数与向量的积:实数 与向量 的积是一个向量.
(1)| |=| |•| |;
(2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0.
(3)若 =( ),则 • =( ).
两个向量共线的充要条件:
(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .
(2) 若 =( ),b=( )则 ‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2.
4.P分有向线段 所成的比:
设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比.
当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0;
分点坐标公式:
5. 向量的数量积:
(1).向量的夹角:
(2).两个向量的数量积:
(3).向量的数量积的性质:
(4) .向量的数量积的运算律:
6.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等.由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点.
七、立体几何
1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题.
能够用斜二测法作图.
2.空间两条直线的位置关系:平行、相交、异面的概念;
会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法.
3.直线与平面
①位置关系:平行、直线在平面内、直线与平面相交.
②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据.
③直线与平面垂直的证明方法有哪些?
④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900}
⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.
4.平面与平面
(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)
(2)掌握平面与平面平行的证明方法和性质.
(3)掌握平面与平面垂直的证明方法和性质定理.尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直.
(4)两平面间的距离问题→点到面的距离问题→
(5)二面角.二面角的平面交的作法及求法:
①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;
②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形.
③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?
三角公式汇总
一、任意角的三角函数
在角 的终边上任取一点 ,记: ,
正弦: 余弦:
正切: 余切:
正割: 余割:
注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向线段 、 、 分别叫做角 的正弦线、余弦线、正切线.
二、同角三角函数的基本关系式
倒数关系: , , .
商数关系: , .
平方关系: , , .
三、诱导公式
⑴ 、 、 、 、 的三角函数值,等于 的同名函数值,前面加上一个把 看成锐角时原函数值的符号.(口诀:函数名不变,符号看象限)
⑵ 、 、 、 的三角函数值,等于 的异名函数值,前面加上一个把 看成锐角时原函数值的符号.(口诀:函数名改变,符号看象限)
四、和角公式和差角公式
五、二倍角公式

二倍角的余弦公式 有以下常用变形:(规律:降幂扩角,升幂缩角)
, , .
六、万能公式(可以理解为二倍角公式的另一种形式)
, , .
万能公式告诉我们,单角的三角函数都可以用半角的正切来表示.
七、和差化积公式
…⑴
…⑵
…⑶
…⑷
了解和差化积公式的推导,有助于我们理解并掌握好公式:
两式相加可得公式⑴,两式相减可得公式⑵.
两式相加可得公式⑶,两式相减可得公式⑷.
八、积化和差公式

楼上的好全面哦,我就不多讲了,纯粹是为了那微薄的分数啊。。。见谅

三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+t...

全部展开

三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
降幂公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)

收起

1、积化和差公式:
sinαsinβ=-[cos(α+β)-cos(α-β)]
cosαcosβ=[cos(α+β)+cos(α-β)]
sinαcosβ=[sin(α+β)+sin(α-β)]
cosαsinβ=[sin(α+β)-sin(α-β)]
2、和差化积公式
sinθ+sinφ=2sincos
sinθ-sinφ=2cossin
cosθ+cosφ=2coscos
cosθ-cosφ=-2sinsin