是否存在常数a,b,c,使等式3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3,对于任意正整数n成立,并求出a和b的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 06:43:40
xQ]K0;-IVA{(L\Qܐ
M)t&7&=${νFY&s>@1R#,?" 0taQxK8`"PIa+YU7Pŝj%M2˴Awd$=z4Zm(q^!rPz8ےp[c2o>5?su(ze7yQ~*f/ˑ4O8e8唚_۠#r%"6]-
是否存在常数a,b,c,使等式3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3,对于任意正整数n成立,并求出a和b的值
是否存在常数a,b,c,使等式3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3,对于任意正整数n成立,并求出a和b的值
是否存在常数a,b,c,使等式3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3,对于任意正整数n成立,并求出a和b的值
利用1^2+2^2+...+n^2=n(n+1)(2n+1)/6
2^2+4^2+..+(2n)^2
=4(1^2+2^2+...+n^2)
=2n(n+1)(2n+1)/3
3^2+5^2+...+(2n+1)^2
=1^2+2^2+...+(2n+1)^2
-1^2-[2^2+4^2+...+(2n)^2]
=(2n+1)(2n+2)(4n+3)/6-1-2n(n+1)(2n+1)/3
=n(4n^2+12n+11)/3
所以存在且仅有a=12,b=11,使得3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3成立
是否存在常数a,b,c,使等式1^2+3^2……(2n-1)^2=an(bn^2+c)/3
是否存在常数A,B,C,使等式1*2的平方加2*3的平方一直加到N*(N加1)的平方=
是否存在常数a,b,c,使等式3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3,对于任意正整数n成立,并求出a和b的值
是否存在常数a、b、c,使等式1*3+3*5+5*7+……+(2n-1)(2n+1)=n*(an^2+bn+c)/3对任意正整数成立?证明.
是否存在常数a、b、c,使等式1*3+3*5+5*7+……+(2n-1)(2n+1)=n*(an^2+bn+c)/3对任意正整数成立?证明
是否存在常数a,b,c,使等式(1/n)3+(2/n)3+(3/n)+.+(n/n)3=(an2+bn+c)/n对一切n属于N*都成立?证明你的结论.
是否存在常数a,b使等式1*n+2*(n-1)+3*(n-2)+...+n*1=an*(n+b)(n+2)
是否存在常数a,b,c,是等式1^2+3^2+5^2+...+(2n-1)^2=an/3(bn^2+c)对任意正整数n都成立
是否存在常数a,b,c使得等式1²+3²+5²+…+(2n-1)²=1/3an(bn²+c),对n∈N﹡都成立
数学归纳法:求证是否存在常数a、b、c,使等式1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)=1/4n^2(n+a)(n+b只有a,没有c
是否存在常数a、b、c,使等式1^2+3^2+5^2……+(2n-1)^2=an/3(bn^2+c),我知道存在,可证明过程中关于abc的三元方程解不出来啊,
是否存在常数a,b,c,使等式1^2+3^2+5^2+……+(2n-1)^2=1/3an(bn^2+c)对任意正整数n都成立?证明你的结论.(把n=1,2,3分别代入等式建立了一个方程组,可是解不出a,b,c,麻烦写出解a,b,)不可能是无解,但
yi ge 是否存在常数a,b使等式1^2/(1*3)+2^2/(3*5)+.+n^2/(2n-1)*(2n+1)=(a*n^2+n)/(bn+2)对一切n属于N*都成立
是否存在常数a、b、c,使等式1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)=an^4+bn^2+c对一切正整数n都成立?证明你的结论.过程
是否存在常数a,b,c使等式(n^2-1^2)+2(n^2-2^2)+...n(n^2-n^2)=an^4+bn^2+c对一切正整数n都成立?
))是否存在常数a,b,c使等式1*(n^2-1^2)+2*(n^2-2^2)+...+n(n^2-n^2)=an^4+bn^2+c对一切正整数N都成立?证明你的结论.
是否存在常数a,b,c使得等式1*2^2+2*3^3+……+n(n+1)^2=n(n+1)(an^2+bn+c)/12,对于一切正整数n都成立?并证明.
是否存在常数a、b、c,使得等式1x3+2x4+3x5+…+n(n+2)=1/6n(an^2+bn+c)对一切自然n都成立,请证明你的结论