已知|a|=根下2,|b|=3,a与b的夹角为45度;,求使向量a+λb与λa+b的夹角是锐角时的λ的取值范围下地拜求解法,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 11:00:17
已知|a|=根下2,|b|=3,a与b的夹角为45度;,求使向量a+λb与λa+b的夹角是锐角时的λ的取值范围下地拜求解法,
xRN@~61۾)ɮw%rQ$AD"&>>rn)(nwgoWϙ8n6/im#%#'n[N+H$-m/$TCv EX \𲿵L?YޏcY.\{ ,r^v͵, +*Ew)de5N12YM<0`fE

已知|a|=根下2,|b|=3,a与b的夹角为45度;,求使向量a+λb与λa+b的夹角是锐角时的λ的取值范围下地拜求解法,
已知|a|=根下2,|b|=3,a与b的夹角为45度;,求使向量a+λb与λa+b的夹角是锐角时的λ的取值范围
下地拜求解法,

已知|a|=根下2,|b|=3,a与b的夹角为45度;,求使向量a+λb与λa+b的夹角是锐角时的λ的取值范围下地拜求解法,
设向量λa+b与a+λb的夹角为锐角α
cosα>0
而cosα=[(λa+b)(a+λb)/√[(λa+b)(a+λb)]^2
=[λ|a|^2+(λ^2+1)ab+λ|b|^2]/√(λ|a|^2+b^2+2λab)(λ|b|^2+a^2+2λab)

|a|=根号2,|b|=3,a和b的夹角为45°
则ab/|a||b|=cos45°
则ab=3
代入得:
cosα=2λ+3(λ^2+1)+9λ]>0
解得
λ>(√85-11)/6.或者λ