已知函数f(x)=4x-2/x+1(x≠1,x∈R) 数列{an}满足a1=a(a≠-1,a∈R),a (n+1)=f(an)(n∈N*)当a1=4时,记bn=an-2/an-1(n∈N*),证明数列{bn}是等比数列,并求出通项公式an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 14:57:41
已知函数f(x)=4x-2/x+1(x≠1,x∈R) 数列{an}满足a1=a(a≠-1,a∈R),a (n+1)=f(an)(n∈N*)当a1=4时,记bn=an-2/an-1(n∈N*),证明数列{bn}是等比数列,并求出通项公式an
xݒN@_[--d`9!ibLED %(R]WL51n\HF vIɶbl- h9=G=tJ@P:W'L JC*a* HkxC,}(RW:11A:igY8kjAr{tY@T벫-<_|z֊[ɂMd˰Ó373װ bJrO j@X90fcY4̱6 \!ף!龹Vrpկ,dqp 3tnYd$!s#m%MK% EHns+liL֝qe9<Iw1ϳZemb5tred^p"

已知函数f(x)=4x-2/x+1(x≠1,x∈R) 数列{an}满足a1=a(a≠-1,a∈R),a (n+1)=f(an)(n∈N*)当a1=4时,记bn=an-2/an-1(n∈N*),证明数列{bn}是等比数列,并求出通项公式an
已知函数f(x)=4x-2/x+1(x≠1,x∈R) 数列{an}满足a1=a(a≠-1,a∈R),a (n+1)=f(an)(n∈N*)
当a1=4时,记bn=an-2/an-1(n∈N*),证明数列{bn}是等比数列,并求出通项公式an

已知函数f(x)=4x-2/x+1(x≠1,x∈R) 数列{an}满足a1=a(a≠-1,a∈R),a (n+1)=f(an)(n∈N*)当a1=4时,记bn=an-2/an-1(n∈N*),证明数列{bn}是等比数列,并求出通项公式an
f(x)=(4x-2)/(x+1),a (n+1)=f(an)(n∈N*)
所以a(n+1)= (4an-2)/(an+1),
b(n+1)= (a(n+1)-2)/(a(n+1)-1)
=[(4an-2)/(an+1)-2]/[ (4an-2)/(an+1)-1]
=[(4an-2) -2(an+1)]/[ (4an-2) -(an+1)]
=2(an-2)/[3 (an-1)]
=2/3*bn,
数列{bn}是等比数列,公比是2/3,首项b1=(a1-2)/(a1-1)=2/3.
∴bn=(2/3)^n.
即(an-2)/(an-1) =(2/3)^n.
即得an=(2^n-2*3^n)/(2^n-3^n).

你妈的。连题目都不写清楚,去死吧!