在正方体ABCD-A1B1C1D1中,M为棱CC1的中点,AC与BD相交与点O,求证;A1O⊥平面MBD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 19:34:27
在正方体ABCD-A1B1C1D1中,M为棱CC1的中点,AC与BD相交与点O,求证;A1O⊥平面MBD
xURA~V9h9pg(}PAD( )(*EwfS^ovfG= ==_u'Oy{m0S]34S綉~3MMea}[1ޠ#lu6uWw#ˠoS:Eju9_*K‹zVEZ9*s7yʉ>'wMn"B)tO {}N LhޠbÎӻ;rʍ ڰ/ܒ򉍏`e1ΞYtT ^iQ&IjHTVb`X^b |hյߙ5*8^3,/V̧RW,U0'6He_jM5;GVZ`m _όO7-xr|B<C2=#5 -, F7$A2Y9tS%(<śL&&›"^m2s)x?&xÛ* 0HT<^r2?Dt&c8c%"HMBXreC.ʌFq"rEcG=R4*JCH

在正方体ABCD-A1B1C1D1中,M为棱CC1的中点,AC与BD相交与点O,求证;A1O⊥平面MBD
在正方体ABCD-A1B1C1D1中,M为棱CC1的中点,AC与BD相交与点O,求证;A1O⊥平面MBD

在正方体ABCD-A1B1C1D1中,M为棱CC1的中点,AC与BD相交与点O,求证;A1O⊥平面MBD
要证明A1O⊥平面MBD,我们可以证明A1O垂直平面当中的两条相交的边,这里我是要证明A1O⊥BD,A1O⊥DM.
证明:过O点作ON//BC交CD边于N点;
由题意知O为BD的中点,所以N为CD边的中点(根据三角形中位线定理判定);
连接D1N,D1N与DM相交于H点;
因为ON//BC,BC//A1D1;
所以ON//A1D1;
所以A1、D1、N、O四个点组成平面A1D1NO;
因为N为CD的中点,M为CC1的中点,容易证得三角形DND1全等于三角形CDM;
所以角CDM=角DD1N;
因为角DD1N+角DND1=90°;
所以角CDM+角DND1=90°;
即角NHD=90°;
所以DM⊥D1N;
因为A1D1⊥平面DCC1D1,DM为平面DCC1D1内的一条直线;
所以A1D1⊥DM;
因为直线D1N与直线A1D1相交,且均位于平面A1D1NO内,由此可知直线DM⊥平面A1D1NO;
又因为A1O为平面A1D1NO内的一条直线,所以DM⊥A1O(证得我们的第一个条件);
连接直线A1B,直线A1D;
因为它们分别是正方形AA1D1D与正方形ABB1A1的对角线,而这两个正方形又是相等的,所以A1B=A1D;
所以三角形A1DB为等腰三角形;
又因为A1O为BD边的中线,所以A1O⊥BD(等腰三角形三线合一);
所以我们证得A1O⊥DM,A1O⊥BD;
因为DM与BD相交,且均位于平面BDM立面,由此可知,A1O⊥平面BDM
图形你自己根据我这里写的意思画一下,然后再对照着证明