设等差数列{an}的前n项的和为Sn,且S4=-62,S6=-75求:(1){an}的通项公式an及前n项的和Sn;(2)|a1|+|a2|+|a3|+……+|a24|=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 00:46:22
设等差数列{an}的前n项的和为Sn,且S4=-62,S6=-75求:(1){an}的通项公式an及前n项的和Sn;(2)|a1|+|a2|+|a3|+……+|a24|=
xTnE~+Rڻ3؛x_ڵNL|(JiB+*P.HiDڦaI ٍ zΙo<ٓW';fǏNw?7^j/'G79jƉIMӃfxƛ kPK/Z%JFHOl4[`g e?kl<-,paĈ᪛$a,I :pqA"4;rT(\HJ b[`Vj@.6n,?3]Z1'R%q tjĚ-(}s%D(^$hUHÒ 獁J~Tt繉\eb**_{xzy2$8}*Q5JIP B#SԀ:PUpY۱{|⋵(= E(DCD AapA!* qb$.Q(!ZiO={q߼Qi du*[d:x^[Y]S>Wn\?] Bގo$qRӔFq4 ̰wB?Ⱥ4m)vHC B"cN0@vqt^ 5^rq*;":㎈K$&YCH\|;$!

设等差数列{an}的前n项的和为Sn,且S4=-62,S6=-75求:(1){an}的通项公式an及前n项的和Sn;(2)|a1|+|a2|+|a3|+……+|a24|=
设等差数列{an}的前n项的和为Sn,且S4=-62,S6=-75求:
(1){an}的通项公式an及前n项的和Sn;
(2)|a1|+|a2|+|a3|+……+|a24|=

设等差数列{an}的前n项的和为Sn,且S4=-62,S6=-75求:(1){an}的通项公式an及前n项的和Sn;(2)|a1|+|a2|+|a3|+……+|a24|=
1、∵在等差数列中
S4=4*a1+4*(4-1)*d/2=4a1+6d= -62
S6=6*a1+6*(6-1)*d/2=6a1+15d= -75
整理得:
2a1+3d= -31……(1)
2a1+5d= -25……(2)
由(2) - (1)得:
2d=6
d=3
将d=3代入(1)得:
2a1+3*3 = -31
a1= -20
∴an=a1+(n-1)*d
= -20+(n-1)*3
=3n-23
Sn=n*a1+n*(n-1)*d/2
=n*(-20)+n*(n-1)*3/2
=3/2*n^2-43/2*n
2、∵an=3n-23
∴当an>0时
3n-23 > 0
n > 23/3
即当n=7时,an0
∴a1,a2,a3,a4,a5,a6,a7都是负数
a8之后都是正数
∴|a1|+|a2|+…+|a24|
= -(a1+a2+…+a7)+(a8+a9+…+a24)
= -S7+(S24-S7)
=S24-2S7
=[3/2*24^2-43/2*24] - 2*[3/2*7^2-43/2*7]
=348 - (-154)
=502


4a1+d+2d+3d=-62;4a1+6d=-62;
6a1+d+2d+3d+4d+5d=-75,6a1+15d=-75;
a1=-20;d=3;
(1)an=a1+3(n-1)=3n-3-20=3n-23;
Sn=3*1-23+3*2-23+...+3*n-23=3(1+2+...+n)-23n=3n(n+1)/2-23n;
(2)|a1|+|...

全部展开


4a1+d+2d+3d=-62;4a1+6d=-62;
6a1+d+2d+3d+4d+5d=-75,6a1+15d=-75;
a1=-20;d=3;
(1)an=a1+3(n-1)=3n-3-20=3n-23;
Sn=3*1-23+3*2-23+...+3*n-23=3(1+2+...+n)-23n=3n(n+1)/2-23n;
(2)|a1|+|a2|+|a3|+…+|a24|
=(20+17+14+11+8+5+2)+(1+4+7+10+13+16+19+22+25+28+31+34+37+40+43+46+49)
=(22*3+11)+(50*8+25)=77+425=502;

收起