∫x^2/(1+^2)dx,∫sin^2xdx计算不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 08:29:59
x){Ա"H_P;H3B/̋3Hxnuӟ}nv$铨CΆL[Z*z
q
C]CB(X\Q7 fT b
$c@`+@:`@~ !|A
∫x^2/(1+^2)dx,∫sin^2xdx计算不定积分
∫x^2/(1+^2)dx,∫sin^2xdx计算不定积分
∫x^2/(1+^2)dx,∫sin^2xdx计算不定积分
∫ x^2/(1+x^2)dx
= ∫ (1 - 1/(1+x^2))dx
= x - arctan(x) + C
∫ sin^2xdx
= 1/2 ∫ (1 - cos(2x))dx
= 1/2 (x - 1/2 sin(2x)) + C
∫sin^2x/(1+sin^2x )dx求解,
∫(1-sin^2( x/2))dx
∫(cosx/1+sin^2x)dx
∫sin^2x(1+tanx)dx
∫1/sin(x/2)dx
∫1+sin^2x/1-cos2x dx∫1+sin^2x/1-cos2x dx
∫x/sin^2(x) dx
∫sin(x) cos^2(x)dx
∫(2/sin^2x)dx=
求∫ sin^2 x/2 dx ..
∫sin(6x)sin(2x)dx=?
求不定积分:∫sin(x^2)dx
求不定积分∫sin(x/2)dx
∫[(sin^2)x]dx求不定积分
∫sinx/(cosx-sin^2x)dx
∫sin(√2x)dx
∫ 4/sin^2x dx
求∫sin(x^2)dx