f(x)在闭区间0到2a上连续,且f(0)等于f(2a)证明必有一点m属于闭区间0到a,使得f(m+a)=f(a)成立.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 03:13:53
x)K{ΧsViϮӷ<`dG^d2k;{ٜ';7}qPY:Oo:H[= qAg~&Hp9Hfы3X|ħ@}~OvɌ+}̔|̔R\<}CcCs#CKc#KSCcS<; JJ
f(x)在闭区间0到2a上连续,且f(0)等于f(2a)证明必有一点m属于闭区间0到a,使得f(m+a)=f(a)成立.
f(x)在闭区间0到2a上连续,且f(0)等于f(2a)证明必有一点m属于闭区间0到a,使得f(m+a)=f(a)成立.
f(x)在闭区间0到2a上连续,且f(0)等于f(2a)证明必有一点m属于闭区间0到a,使得f(m+a)=f(a)成立.
这个网友,你看下对不对http://zhidao.baidu.com/question/1381721904329513540.html