高数中的微分中值定理的一道题f(x)在【0,1】内连续,在(0,1)内可导,并且f(0)=f(1)=0,f(0.5)=1证明,在(0,0.5)内,至少存在一个m,使得f(m)=m.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:46:34
高数中的微分中值定理的一道题f(x)在【0,1】内连续,在(0,1)内可导,并且f(0)=f(1)=0,f(0.5)=1证明,在(0,0.5)内,至少存在一个m,使得f(m)=m.
xQMO@;ݸ"/?D!zc#В4%cٖ6B`m͛7oߔ*Ƽo!Qu|ӉZuoͫ7TǷhnf~O`@] DaQr )=ߚFtS]ݪ/c4> ?072˙QN~a>[1J2qJ/ZP*w4=jl{#t=8/!l

高数中的微分中值定理的一道题f(x)在【0,1】内连续,在(0,1)内可导,并且f(0)=f(1)=0,f(0.5)=1证明,在(0,0.5)内,至少存在一个m,使得f(m)=m.
高数中的微分中值定理的一道题
f(x)在【0,1】内连续,在(0,1)内可导,并且f(0)=f(1)=0,f(0.5)=1
证明,在(0,0.5)内,至少存在一个m,使得f(m)=m.

高数中的微分中值定理的一道题f(x)在【0,1】内连续,在(0,1)内可导,并且f(0)=f(1)=0,f(0.5)=1证明,在(0,0.5)内,至少存在一个m,使得f(m)=m.
令f(x)=-4(x-0.5)^2+1
显然f(x)满足题目条件
在(0,0.5)内
令g(x)=f(x)-x
=-4(x-0.5)^2+1-x
=-4x^2+3x
=-4x(x-3/4)
=x(0.75-x)>0
f(x)=-4(x-0.5)^2+1>x恒成立
所以,对该f(x),它在(0,0.5)内,是不存在一个m,使得f(m)=m的.