微分方程y'=e的x+y次方的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:46:17
微分方程y'=e的x+y次方的通解
xQAK0+-Y-^3Ă(B;LcS/n6A*i:/vZa{}//^Ջ괳bt)+4ZZ–Ms9z'J\?:oZ"Eo&QBix@t$fRLFij 'SXn2IZaTb᫺~(VY˖Guxgt9J(7IsvLcD"FIJp8,1G x}cZ[ Z:|h[{5k=.|V}ՙF/[r-ң.}~~2IQjJYW^e(;Zuv橌Bt=B*C )L'D

微分方程y'=e的x+y次方的通解
微分方程y'=e的x+y次方的通解

微分方程y'=e的x+y次方的通解
∵y'=e^(x+y) ==>y'=e^x*e^y
==>e^(-y)dy=e^xdx
==>e^(-y)=C-e^x (C是积分常数)
==>y=-ln|C-e^x|
∴原微分方程的通解是 y=-ln|C-e^x| (C是积分常数)

令u=x+y
u'=1+y'
所以u'=1+exp(u)
再令t=exp(u)
dt=tdu
(1/t)(dt/dx)=1+t
dt/(t^2+t)=dx
所以x=ln[t/(1+t)]+C
再将x,y代入得到
exp(y) = C(1 + exp(x+y))

y'=e^x*e^y=dy/dx
e^-y*dy=e^x*dx
两遍同时积分
-e^-y=e^x+C1
同时取对数得
y=-x+C