微分方程(x2-1)dy+(2xy-cosx)dx=0,y|x=0=1的特解为?答案是y=sinx-1/x2-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:51:33
微分方程(x2-1)dy+(2xy-cosx)dx=0,y|x=0=1的特解为?答案是y=sinx-1/x2-1
xRN@ҬHTD.bDQ[-/S[ыҼ7^R.xh]cRE U e"d!|6*ӟtZ7X kiznrcVJ9Bb%MLI$<9C1'L3yo{=+]4:g|dAF(6fyI$TV܁4If5r\=!Ê;3Pl 念fs}H⃟F0U+;]"ؕK8d6鵃{Vgl:;}/ʥb_We+

微分方程(x2-1)dy+(2xy-cosx)dx=0,y|x=0=1的特解为?答案是y=sinx-1/x2-1
微分方程(x2-1)dy+(2xy-cosx)dx=0,y|x=0=1的特解为?
答案是y=sinx-1/x2-1

微分方程(x2-1)dy+(2xy-cosx)dx=0,y|x=0=1的特解为?答案是y=sinx-1/x2-1
(x2-1)dy+(2xy-cosx)dx=0
dy/dx+2x/(x^2-1)*y=cosx/(x^2-1)
这是个一阶非齐次微分方程
通解为:
y=ce^(-∫P(x)dx)+∫f(x)e^(∫P(x)dx)dx*e^(-∫P(x)dx)
这里P(x)=2x/(x^2-1),f(x)=cosx/(x^2-1)
显然∫P(x)dx=∫2x/(x^2-1)dx=∫dx^2/x^2-1=ln(x^2-1)
所以∫f(x)e^(∫P(x)dx)dx=∫cosx/(x^2-1)*e^[ln(x^2-1)]dx=∫cosxdx=sinx
所以通解为y=c/(x^2-1)+sinx/(x^2-1)
当x=0时y=1显然有c=-1
答案应该加括号
解应该是y=-1/(x^2-1)+sinx/(x^2-1)