微分方程dy/dx=xy/y^2-x^2 ,当x=0,y=1的特解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:28:31
微分方程dy/dx=xy/y^2-x^2 ,当x=0,y=1的特解
x 0_cb[bcӥ!% "ꠓ{}Z5vι?ܴ=?{8.eA}%F~KWk2Y:vO"+AK@B@p zfo\GILat;*MC 2e6,r.y

微分方程dy/dx=xy/y^2-x^2 ,当x=0,y=1的特解
微分方程dy/dx=xy/y^2-x^2 ,当x=0,y=1的特解

微分方程dy/dx=xy/y^2-x^2 ,当x=0,y=1的特解
dy/dx=xy/(y^2-x^2)
y^2dy-x^2dy=xydx
(y^2-x^2)dy=xydx
x=yu dx=ydu+udy
(y^2-y^2u^2)dy=y^2u*(ydu+udy)
(1-u^2)dy=uydu+u^2dy
(1-2u^2)dy=uydu
dy/y=udu/(1-2u^2)
lny=(-1/4)ln|1-2u^2|+lnC
y=C/(1-2u^2)^(1/4)
y=C/[1-2(x/y)^2]^(1/4)
x=0,y=1,C=1
特解y=1/(1-2(x/y)^2) ^(1/4)