求定积分,【从-π/2到π/2】[(1+x)cosx]/(1+sinx^2) dx答案是π/2,原题中还有一部分是ln[x+(1+x^2)^1/2]因为是奇函数等于0,就不用再算了.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:07:49
求定积分,【从-π/2到π/2】[(1+x)cosx]/(1+sinx^2) dx答案是π/2,原题中还有一部分是ln[x+(1+x^2)^1/2]因为是奇函数等于0,就不用再算了.
xQJA~ EkݽmED&-؋.6+-J AZ=BϸWB3;*y+q?~JAܵ@O{!r(f[_; {Q=#TK$WbjHv Q4N񵎋-FBlWl ދd SԘ⫱R I 26iy,9C:KM/( :U+*\?ܾNyċ Y5sDSbv:w[4/MىÉz8bnaSr91@p?\pJv^kkwPCCڐڅg^M7e ẋAˏ9܈ˋ{*JjRNڥ}?D%yLoc8ӄ¢*0oawa@@|U '5

求定积分,【从-π/2到π/2】[(1+x)cosx]/(1+sinx^2) dx答案是π/2,原题中还有一部分是ln[x+(1+x^2)^1/2]因为是奇函数等于0,就不用再算了.
求定积分,【从-π/2到π/2】[(1+x)cosx]/(1+sinx^2) dx
答案是π/2,原题中还有一部分是ln[x+(1+x^2)^1/2]因为是奇函数等于0,就不用再算了.

求定积分,【从-π/2到π/2】[(1+x)cosx]/(1+sinx^2) dx答案是π/2,原题中还有一部分是ln[x+(1+x^2)^1/2]因为是奇函数等于0,就不用再算了.
xcosx/(1+sinx^2)这项也是奇函数,所以是0
只剩下cosx/(1+sinx^2)了
积分(-π/2到π/2) [ cosx/(1+sinx^2) ]dx
=积分(-π/2到π/2) [ 1/(1+sinx^2) ]dsinx
=arctan(sinx) | (-π/2到π/2)
=2arctan1
=π/2

既然你知道奇函数在对称区间积分为0,那么把那个被积分式xcosx/(1+sin²x)也是奇函数,不用算了。
仅仅积分∫cosx/(1+sin²x)dx=2∫cosx/(1+sin²x)dx,从0到π/2
∫cosx/(1+sin²x)dx=arctansinx,带入π/2和0,既得结果π/2