求f(x)=log以2为底(4分之x)的对数乘log以2为底(2x)的对数(1小于等于x小于等于8)的值域和单调区间急.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:19:37
求f(x)=log以2为底(4分之x)的对数乘log以2为底(2x)的对数(1小于等于x小于等于8)的值域和单调区间急.
求f(x)=log以2为底(4分之x)的对数乘log以2为底(2x)的对数(1小于等于x小于等于8)的值域和单调区间
急.
求f(x)=log以2为底(4分之x)的对数乘log以2为底(2x)的对数(1小于等于x小于等于8)的值域和单调区间急.
因f(x)=log2(x/4)log2(2x)
=[log2(x)-2][1+log2(x)]
=[log2(x)]^2-log2(x)-2
=[log2(x)-1/2]^2-9/4
而1≤x≤8,即0≤log2(x)≤3
则-9/4≤f(x)≤4
令g(x)=log2(x),显然g(x)为增函数,且当1≤x≤8时,0≤g(x)≤3
令h(x)=(x-1/2)^2-9/4,其开口向上,对称轴为x=1/2,则当x≤1/2为增函数,当x>1/2为减函数
由于f(x)是由g(x)与h(x)复合而成,即f(x)=h[g(x)]
则当0≤log2(x)≤1/2即1≤x≤√2时,f(x)为增函数
当1/2≤log2(x)≤3即√2≤x≤8时,f(x)为减函数
所以单调增区间为[1,√2],单调减区间[√2,8]
f(x)=log2(x/4)·log2(2x)
=[log2(x)-log2(4)]·[log2(2)+log2(x)]
=[log2(x)-2]·[1+log2(x)]
=[log2(x)]²-log2(x)-2,
设u=log2(x),则f(u)=u²-u-2=(u-1/2)²-9/4,
∵u=log2(x)在[1,8]上是...
全部展开
f(x)=log2(x/4)·log2(2x)
=[log2(x)-log2(4)]·[log2(2)+log2(x)]
=[log2(x)-2]·[1+log2(x)]
=[log2(x)]²-log2(x)-2,
设u=log2(x),则f(u)=u²-u-2=(u-1/2)²-9/4,
∵u=log2(x)在[1,8]上是增函数,∴u∈[0,3],
∴f(u)在u∈[0,1/2]上单减,在u∈[1/2,3]上单增,
∵u=1/2时,x=2^(1/2)=√2,
∴f(x)在[1,√2]上是减函数,在[√2,3]上是增函数。
当x=√2时,f(x)有最小值=-9/4,
当x=8时,f(x)有最大值=4,
故f(x)的值域是[-9/4,4]。
收起