2a+b=2*√5 求a²+b²最小值?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 18:09:53
2a+b=2*√5 求a²+b²最小值?
xRMN@ :V1 ԕ$4IHQ$( qg?BLQ[Se eb Io -_7Ũ^YOG> }v~OQ{&R#cHޏ@H-D;gԱX4I}1=pvxhv%鋰bz{y#k"r٢S©M:N&88rIbҔ2Aj&G#~[ V{p!:fAUZJ >XdI..lEɘDf F]LYQ DV|4)+;TW*T

2a+b=2*√5 求a²+b²最小值?
2a+b=2*√5 求a²+b²最小值?

2a+b=2*√5 求a²+b²最小值?
权方和不等式法:
a^2+b^2
=(2a)^2/4+b^2/1
≥(2a+b)^2/(4+1)
=(2√5)^2/5
=4.
故所求最小值为:4.
还可用三角代换法:
设a=√tcosθ,b=√tsinθ.
则2a+b=2√5
↔2√tcosθ+√tsinθ=2√5
↔√t=2√5/(2cosθ+sinθ)
↔√t=2/sin(θ+φ) (tanφ=2)
∴sin(θ+φ)=1时,√t≥2.
∴a^2+b^2
=(√tcosθ)^2+(√tsinθ)^2
=t
≥4.
故所求最小值为:4.

b=2√5-2a
所以a²+b²
=5a²-8√5a+20
=5(a-4√5/5)²+4
所以最小值是4