已知a,b,c属于R+,且a+b+c=1,则a²+(b/2)²+(c/3)²的最小值为——

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:46:36
已知a,b,c属于R+,且a+b+c=1,则a²+(b/2)²+(c/3)²的最小值为——
x){}KutndW_ΓSm uvLTS64H7҄ZixiÞ';v=jD6IE2ZΆ~iSV_tO?Xjm3 CsDG[(\jamoĖ`A[c3}K0Q<;Pd}‘

已知a,b,c属于R+,且a+b+c=1,则a²+(b/2)²+(c/3)²的最小值为——
已知a,b,c属于R+,且a+b+c=1,则a²+(b/2)²+(c/3)²的最小值为——

已知a,b,c属于R+,且a+b+c=1,则a²+(b/2)²+(c/3)²的最小值为——
要利用柯西不等式
a+b+c=1
[1²+(1/2)²+(1/3)²][a²+(b/2)²+(c/3)²]≥(a+b+c)²=1
∴a²+(b/2)²+(c/3)²
≥1/(1+1/4+1/9)
=36/49
最小值为36/49