设等比数列{an}的公比q=1/2,前n项和为Sn,则S4/a4=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:37:35
x){nOy6uӎՉygEl(wA1 fF'jƙhhXD8c$63JAEOSB4@|>J}Mm_\g
0V&`kA2#hXw"H
a`ƶ(b@ߢ Dz
设等比数列{an}的公比q=1/2,前n项和为Sn,则S4/a4=
设等比数列{an}的公比q=1/2,前n项和为Sn,则S4/a4=
设等比数列{an}的公比q=1/2,前n项和为Sn,则S4/a4=
s4/a4
=[a1(1-q^4)/(1-q)]/a1q^3
=[(1-q^4)/(1-q)]/q^3
=[(1-q)(1+q)(1+q^2)]/(1-q)]/q^3
=(1+q)(1+q^2)/q^3
=(1+1/2)*(1+1/2^2)/(1/2)^3
=(3/2*5/4)/(1/8)
=15/8*8
=15
解:S4=a1(1-1/(2^4)/(1-1/2)=15a1/8
a4=a1/8
S4/a4=15
15
S4/a4=[a1(1-q^4)/(1-q)]/a1q3=(1-q^4)/(1-q)q^3=15