收敛数列的有界性证明数列{Xn}收敛,设当n趋于无穷时n=a,根据数列极限定义,对于堁E=1,存在正整数N,当n>N时,不等式/Xn-a/<1都成立,于是当n>N时,【/Xn/=/(Xn-a)+a/≤/Xn-a/+/a/<1+/a/】取M=max{/X1/,/X2/,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:08:42
收敛数列的有界性证明数列{Xn}收敛,设当n趋于无穷时n=a,根据数列极限定义,对于堁E=1,存在正整数N,当n>N时,不等式/Xn-a/<1都成立,于是当n>N时,【/Xn/=/(Xn-a)+a/≤/Xn-a/+/a/<1+/a/】取M=max{/X1/,/X2/,
xn@_mK.XT*^{kERv@BRBR.B &K3glxBFݷ_Fg$ΘVhfipEua|}UVy `YrY{zAkc55@~]25NZd<*@.k%- U2)}S犸pQ?3z^yrVB1:,6{_k`~I+VE9* Rb>K WCf8&S012@*2#;-m̐Oho^X)\F ,%V5U,,gK%5WE1q%G0DAn)xl!psĶI~tpwOmhg`}k7qF^g͜x6!*uoSr|=P7o(upyR,ʵX07Lh9U"54nߍ&o!?޷4X&&kZ[Շ*i*@T`drDjaO0g#8 ,A :PE6v'0 2)}AH.ď+8Lrlo8z&E3)W+6C|P0p;]g3 NXC a ]?ӕ6R vo0 16T&v nBk|%$a`P5jyPȬUqT;stoTJ

收敛数列的有界性证明数列{Xn}收敛,设当n趋于无穷时n=a,根据数列极限定义,对于堁E=1,存在正整数N,当n>N时,不等式/Xn-a/<1都成立,于是当n>N时,【/Xn/=/(Xn-a)+a/≤/Xn-a/+/a/<1+/a/】取M=max{/X1/,/X2/,
收敛数列的有界性证明
数列{Xn}收敛,设当n趋于无穷时n=a,根据数列极限定义,对于堁E=1,存在正整数N,当n>N时,不等式/Xn-a/<1都成立,于是当n>N时,【/Xn/=/(Xn-a)+a/≤/Xn-a/+/a/<1+/a/】取M=max{/X1/,/X2/,X3/,/XN/,1+/a/}那么数列{Xn}中的一切Xn都满足不等式/Xn/≤M.不明白【】中的换算,还有就是M的取值中XN的意思,还有就是数列趋于a但是只是趋于,为什么M的取值里面有1+/a/

收敛数列的有界性证明数列{Xn}收敛,设当n趋于无穷时n=a,根据数列极限定义,对于堁E=1,存在正整数N,当n>N时,不等式/Xn-a/<1都成立,于是当n>N时,【/Xn/=/(Xn-a)+a/≤/Xn-a/+/a/<1+/a/】取M=max{/X1/,/X2/,
目的是证明收敛数列的有界性.数列{Xn}收敛到a(不是n=a,),根据极限定义对于任意E>0,存在正整数N,当n>N,不等式/Xn-a/<E都成立,此处E可以选为1.直观地想就是当n趋于无穷的时候,Xn的值无限接近a,为了准确描述这一性质,引入了N.【】的是绝对值不等式,为的是证明,当n>N时,所有的Xn都有上限,都要小于E+|a|.就是Xn无限接近a,在n>N之后,所有Xn都小于a加上个正数(E).到此证明了从N开始,数列都是有界的(都小于E+|a|).下面要证明n

也就是说LIM情况Xn =获得的定义。
利用率限制的定义,第一次启动全部N后面(这里是无限的)Xn是有界的,我们可以得到情况Xn | <| A | +1
N在前面的数量有限,你可以找到最大值。