已知数列{an}满足 1*a1+2*a2+3*a3+……+n*an=n (1)求{an}通项公式 (2)若Bn=(2^n)/an求Bn的前n项和Sn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:35:19
xŒJ@_% H64VPIC_!Bb$B-'jVZ<蛄nڞ
N6iڂx-7v}7}~ăpؙ~yr4yYTy2EY5|'1+G (äu.57.Gf3#$K]-R`s:
e]_M b:2 5'C
)ݳh6Y[>(AlQ
yRTee)T `F4`ƾƲZV:Wge'^KWb94rɃ\_2`$dɩœBfP-bP$&OcT"CLS4J-+Vî,"e"j=ǟ71G_
~
已知数列{an}满足 1*a1+2*a2+3*a3+……+n*an=n (1)求{an}通项公式 (2)若Bn=(2^n)/an求Bn的前n项和Sn
已知数列{an}满足 1*a1+2*a2+3*a3+……+n*an=n (1)求{an}通项公式 (2)若Bn=(2^n)/an求Bn的前n项和Sn
已知数列{an}满足 1*a1+2*a2+3*a3+……+n*an=n (1)求{an}通项公式 (2)若Bn=(2^n)/an求Bn的前n项和Sn
(1)∵1*a1+2*a2+3*a3+……+n*an=n,
∴1*a1+2*a2+3*a3+……+(n-1)*an-1=n-1,
两式相减,得n*an=1,∴an=1/n.
(2)Bn=(2^n)/(1/n)=n*2^n,
Sn=1×2+2×2²+3×2³+……+n·2^n ①,
①×2得2Sn=1×2²+2×2³+3×2^4+……+n·2^(n+1) ②
①-②得-Sn=2+2²+2³+……+2^n-n·2^(n+1)
=-2(1-2^n)-n·2^(n+1),
∴Sn=2(1-2^n)+n·2^(n+1)=2+(n-1)·2^(n+1).
1)an=1/n
2)Bn=n*2^n,Sn=sum(k*2^k);Sn/2=sum(k*2^(k-1))=sum((k-1)*2^(k-1))+sum(2^(k-1));所以Sn-Sn/2=n*2^n-2^n+1, 即Sn=(n-1)*2^(n+1)+2
已知数列an满足an=1+2+...+n,且1/a1+1/a2+...+1/an
已知数列an'满足a1=1/2,a1+a2+a3+...+an=n^2an,求通项公式
已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an求an
已知数列满足a1=1/2,an+1=2an/(an+1),求a1,a2已知数列满足a1=1/2,a(n+1)=2an/(an+1),求a1,a2;证明0
数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an
已知数列an满足a1=0 a2=1 an=(An-1+An-2)/2 求liman
已知数列an满足a1=0 a2=1 an=(An-1+An-2)/2 求liman
几个数列问题.已知数列{an} a1=1,an+1=an/(1+n^2*an) 求an 已知数列{an} 满足a1=1 a1*a2*a3.*an=n^2 求an
已知数列an满足an=1+2+...n,且(1/a1)+(1/a2)+...(1/an)
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1)
已知数列{an}满足条件:a1=5,an=a1+a2+...a(n-1) n大于等于2,求数列{an}的通项公式
已知递增数列{an}满足a1=1,(2an+1)=an+(an+2),且a1,a2,a4成等比数列.求an
已知数列{an}满足:a1=1,且an-an-1=2n,求(1)a2,a3,a4.(2)求数列{an}的通项an
关于数列极限的已知数列an满足a1=0 a2=1 an=(an-1+an-2)/2 求lim(n->无穷)an
已知数列(an)满足a1=1,an+1=2an/an+2(n∈N*) 求a2,a3,a4,a5 猜想数列(an)的通项公
已知数列{an}满足:a1+a2+a3+.+an=n^2,求数列{an}的通项an.
(1)数列{an}中,a1=1,a2=-3,a(n+1)=an+a(n+2),则a2005=____(2)已知数列{an}满足a1=1,a1×a2×a3…an=n^2,求an.
已知数列{an}满足a(n+2)=a(n+1)-an,a1=1,a2=2,求a2005