高二数学正弦定理的3种证明方法
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 13:26:13
xT]OP+[/]Iq s16mRWHF&In`0[7ӎ+o[Jnzy6%;x?hu҅{ȑda25Qw7>p>^xs
T#@FE_;.*P84"+{7U}{KNkݯ@ #`qpey:b"-ɪӮWwEtQwQAƸŒX
{+yS,nB jN/|
#
3 ̭AD J__@eT{?:m&ߝ;UuZG>'{#Z\Y.y'LӤ{_ڵrO!RH|φB$s⯪bΌ/e/tq<3?_xHX&[VLCYULϒo2Yי Ze)j"fD3K&d(-i4Őa)O :n$iN3u&ir4kgb%\.3h䑐4oey43f"M >
高二数学正弦定理的3种证明方法
高二数学正弦定理的3种证明方法
高二数学正弦定理的3种证明方法
步骤1. 在锐角△ABC中,设BC=a,AC=b,AB=c.作CH⊥AB垂足为点H
CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC
步骤2. 证明a/sinA=b/sinB=c/sinC=2R: 如图,任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度 因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式.
最好作个图.
任意三角形ABC,作ABC的外接圆O.
作直径CD交圆O于D.
连接DB.
因为直径所对的角是直角,所以角DBC=90度
因为同弧所对的圆周角相等,所以角D等于角A.
a/SinA=BC/SinD=CD=2R
类似可证其余两个等式.