求函数y=sin(-2x+6/π)的单调递减区间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 18:42:38
求函数y=sin(-2x+6/π)的单调递减区间
xTN@%%rL>#Q".f5@1TX) $j Nplm"Vqyj"93eU.+S#?wrf uyk}R^RE!,Ué,gxixtH,)ʾ޹Z|NS1DsB੅ Z!F_P(BRLrlk]],htzNݱ:5ݕ<{eVע5$GوrE二<)*~"vѭD45тp\YxDBR>OsZxƻorΒ$a,˜n.6)&k_}?ހ{ fϟ|O3>󓴴"-Gq @YWw#L㮕"re<&iGz'V\(qHHlw-nB28GpPprx

求函数y=sin(-2x+6/π)的单调递减区间
求函数y=sin(-2x+6/π)的单调递减区间

求函数y=sin(-2x+6/π)的单调递减区间
y=sin(-2x+π/6)=sin[π-(-2x+π/6)]=sin(2x+5π/6)
则递减区间是:2kπ+π/2≤2x+5π/6≤2kπ+3π/2
得:kπ-π/6≤x≤kπ+π/3
即减区间是:[kπ-π/6,kπ+π/3],k∈Z

y=sin(-x)周期为2π在-π~π上的单调递减区间为-π/2故它在R上的单调递减区间为2kπ-π/2y=sin(-2x+6/π)=sin[-(2x-6/π)]单调递减区间为:
2kπ-π/2<(2x-6/π)<2kπ+π/2
即2kπ-π/2+6/π<2x<2kπ+π/2+6/π
kπ-π/4+3/π

全部展开

y=sin(-x)周期为2π在-π~π上的单调递减区间为-π/2故它在R上的单调递减区间为2kπ-π/2y=sin(-2x+6/π)=sin[-(2x-6/π)]单调递减区间为:
2kπ-π/2<(2x-6/π)<2kπ+π/2
即2kπ-π/2+6/π<2x<2kπ+π/2+6/π
kπ-π/4+3/π希望可以帮到你

收起

y=sin(-2x+6/π)
=-sin(2x-π/6)
也就是求
sin(2x-π/6)的单调增区间
2x-π/6∈[2kπ-π/2,2kπ+π/2]
x∈[kπ-π/6,kπ+π/3]
所以
函数y的单调减区间为
[kπ-π/6,kπ+π/3]y=sin(-2x+6/π)又不是奇函数,怎么可以提出负号呢?不是奇函数就不能提了吗 ...

全部展开

y=sin(-2x+6/π)
=-sin(2x-π/6)
也就是求
sin(2x-π/6)的单调增区间
2x-π/6∈[2kπ-π/2,2kπ+π/2]
x∈[kπ-π/6,kπ+π/3]
所以
函数y的单调减区间为
[kπ-π/6,kπ+π/3]

收起