已知函数f(x)=2^x-1/(2^x) ,若2^tf(2t)+mf(t)≥0对于t属于[1,2]恒成立,求实数m的取值范围2^x表示2的x次方,2^t表示2的t次方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:04:23
已知函数f(x)=2^x-1/(2^x) ,若2^tf(2t)+mf(t)≥0对于t属于[1,2]恒成立,求实数m的取值范围2^x表示2的x次方,2^t表示2的t次方
xS]OA+veKhb>mLW@A\4FJ*H7|h(QZ ;>3Bk 4w{dJ2|O`Rljf0Zm8kA ;[Mh54$!n&3p ^pc޳iE,U[>rt%ě W/}|APӮ} uϦRb?[/ו)E6Ota8u*P4ErSVjO! C6̀wA~_@33x+>x y5odM ̀IXA #`|$Vi0|'t]5]r޴ ]j2/Z_ XۀݦƑ-# [Keƭp{pR, %5}12-ֶ]r)Z9TTX &~nQǖ| fr6Dz1un>݅ee~b

已知函数f(x)=2^x-1/(2^x) ,若2^tf(2t)+mf(t)≥0对于t属于[1,2]恒成立,求实数m的取值范围2^x表示2的x次方,2^t表示2的t次方
已知函数f(x)=2^x-1/(2^x) ,若2^tf(2t)+mf(t)≥0对于t属于[1,2]恒成立,求实数m的取值范围
2^x表示2的x次方,2^t表示2的t次方

已知函数f(x)=2^x-1/(2^x) ,若2^tf(2t)+mf(t)≥0对于t属于[1,2]恒成立,求实数m的取值范围2^x表示2的x次方,2^t表示2的t次方
f(2t)=[2^(2t)-1]/2^(2t)
2^t*f(2t)=[2^(2t)-1]/2^t
所以2^t*f(2t)+mf(t)
=[2^(2t)+m*2^t-m-1]/2^t
设2^t=q
t属于[1,2] 则q属于[2,4]
2^t*f(2t)+mf(t)=(q²+mq-m-1)/q≥0
因q>0 只需q²+mq-m-1≥0
设f(q)=q²+mq-m-1
为开口向上的抛物线
对称轴x=-m/2
1.-m/2≤2,即m≥-4时 单增
只需f(x)最小=f(2)=4+2m-m-1=m+3≥0
解得m≥-3
所以m≥-3
2.2≤-m/2≤4,即-8≤m≤-4时
只需f(x)最小=f(-m/2)=-m²/4-m-1≥0
解得m=-2
无解
3.-m/2≥4,即m≤-8时,单减
只需f(x)最小=f(4)=3m+15≥0
解得m≥-5
无解
综上:m≥-3