设方程e^(x+y) + sin(xy) = 1 确定的隐函数为y=y(x),求y'和y'|x=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:50:07
x){n߳i;NӨЮTV(Ө l/\tݬZ^Κ}ﳩUi[QlcSI=56IET4MΆڮnvvr~1H^RȅjTNӮՍBUc4DR2bOv/~ںɎ{ucC=@t$AIB Jw
设方程e^(x+y) + sin(xy) = 1 确定的隐函数为y=y(x),求y'和y'|x=0
设方程e^(x+y) + sin(xy) = 1 确定的隐函数为y=y(x),求y'和y'|x=0
设方程e^(x+y) + sin(xy) = 1 确定的隐函数为y=y(x),求y'和y'|x=0
e^(x+y) + sin(xy) = 1
e^(x+y)*(1+y')+cos(xy)(y+xy')=0
y'*[e*(x+y)+xcos(xy)]=-[ycos(xy)+e^(x+y)]
y'=-[ycos(xy)+e^(x+y)]/[e*(x+y)+xcos(xy)]
x=0,求出 y=0,
代入上式,得到y'(x=0)=-1.
dj
Z=x*sin xy+e^x+y或设y=(x)是由方程xy+sin x+sin y=1确定,求y”
设y=y(x)由方程e^xy+sin(xy)=y确定,求dy/dx.
设隐函数y=y(x)由方程x^y-e^y=sin(xy)所确定,求dy
设函数y=f(x)由方程sin(xy)+e^(x+y)=0确定,求dy/dx
设y=y(x)是由方程e^x-e^y=sin(xy)所确定,求y',y'|x=0
设方程e^(x+y) + sin(xy) = 1 确定的隐函数为y=y(x),求y'和y'|x=0
设函数y=f(x)由方程sin y+e^x-xy^2=0确定,求d y/d x
设曲线方程是sin(xy)-e^2x+y^3=0 求它在x=0处的切线方程和法线方程
1、设函数y=y(x)由方程e^x-e^y=sin(xy)所确定,求(dy/dx)|x=0;2、设函数f(x)=x^2+(1/x)+1则f'(x)=?
y=y(x)由方程 [e^(x+y)]+sin(xy)=1确定,求y'(x)及y'(0)
设函数y=f(x)满足方程e^xy+sin(x^2 y)=y^2(y>0),求在x=0点处的切线方程
求曲线e^(xy)+sin(x+y)=x+1在点(0.0)处切线方程
求曲线e^xy+sin(x+y)=x+1在点(0.0)处切线方程
设函数y=y(x)由方程e^y+xy+e^x=0确定,求y''(0)
设y(x)由方程e^y-e^x=xy 所确定的隐函数 求y' y'(0)
设方程e^y+xy=e确定了函数y=y(x),求y'|x=0
高数齐次方程问题xy'sin(y/x)+x=ysin(y/x)Cx=e^cos(y/x)
设y=y(x)由方程e^y+xy=e所确定求y''设 y=y(x) 由方程 e^y +xy=e 所确定求y''