设函数y=f(x)由方程e^(2x+y)—cos(xy)=e—1确定,则曲线f(x)在点(0,1)处的法线方程为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 23:55:15
设函数y=f(x)由方程e^(2x+y)—cos(xy)=e—1确定,则曲线f(x)在点(0,1)处的法线方程为
xJ@3MBYg(J75̮4M-vzj/"93$-ݜ3;xn aٟ4Na?Ǵζ|M uLE DzDncxd@EC963\;TϷ^&0 y*F6 Da6x 4Y8טVe7S[j] {M\F RZzϔ6MRG̰rsf5Ӧ8,sw_

设函数y=f(x)由方程e^(2x+y)—cos(xy)=e—1确定,则曲线f(x)在点(0,1)处的法线方程为
设函数y=f(x)由方程e^(2x+y)—cos(xy)=e—1确定,则曲线f(x)在点(0,1)处的法线方程为

设函数y=f(x)由方程e^(2x+y)—cos(xy)=e—1确定,则曲线f(x)在点(0,1)处的法线方程为
显然f(x)过点(0,1)
将y视为x的函数,求微分
(2+y')e^(2x+y)+sin(xy)*(y+xy')=0
代入x=0时y=1,代入,有:
y'=-2
所以法线方程为y-1=1/2*(x-0)
即x-2y+2=0

已发