定积分(上下限1~0)(3x/1+x^2)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:28:03
定积分(上下限1~0)(3x/1+x^2)dx
x){nvdGד/gN03xSøBP"H3&Hhv6U@EuBEm@RF8`F9y5`mgo:fL: . bqؚg l >s>~v“}@Ƴg<] OW=uOv4<ٱiC/Ph==:^bjPt͇XTvxzN]@ϧl|ںaB95

定积分(上下限1~0)(3x/1+x^2)dx
定积分(上下限1~0)(3x/1+x^2)dx

定积分(上下限1~0)(3x/1+x^2)dx
d(1+x^2)=2xdx
∫[3x/(1+x^2)]dx
=3/2*∫[2x/(1+x^2)]dx
=3/2*∫d(1+x^2)/(1+x^2)
=3/2ln|1+x^2|+C
则∫[上限1,下限0][3x/(1+x^2)]dx
=3/2ln2-3/2ln1
=3/2ln2

分子与分母的导数只相差一个倍数3/2,所以被积函数的原函数是3/2×ln(1+x^2),由公式得定积分的值是3/2×ln2