定积分∫(上限π/3,下限π/4)x/(sin^2x)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:35:04
定积分∫(上限π/3,下限π/4)x/(sin^2x)dx
x){nv=XdG˙7< ahVkgUhT$铬GΆL?o Q\ QH@A `~O=Z ])%@Ԫ+Նp\BAT- l0d6 b }@^ G\C )3HҝWTC. sR9yƚ@HSF 1P

定积分∫(上限π/3,下限π/4)x/(sin^2x)dx
定积分∫(上限π/3,下限π/4)x/(sin^2x)dx

定积分∫(上限π/3,下限π/4)x/(sin^2x)dx
原式=∫x*csc^2x dx(下限π/4,上限π/3)
=-(1/2)*∫xd(cot2x)(下限π/4,上限π/3)
=-(1/2)*xcot2x+(1/2)*∫cot2xdx(下限π/4,上限π/3)
=-(1/2)*(π/3)*cot(2π/3)+(1/4)*∫(cos2x/sin2x)d(2x)(下限π/4,上限π/3)
=√3π/18+(1/4)*∫d(sin2x)/sin2x(下限π/4,上限π/3)
=√3π/18+(1/4)*ln|sin2x|(下限π/4,上限π/3)
=√3π/18+(1/4)*ln(√3/2)=√3π/18+(ln3)/8-(ln2)/4