求解高一数学题,过程1.已知f(x)=3|x|,求f(x)的单调区间2.已知已知f(x)=x^3+x,x∈R,判断f(x)的单调性并证明.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 05:24:37
求解高一数学题,过程1.已知f(x)=3|x|,求f(x)的单调区间2.已知已知f(x)=x^3+x,x∈R,判断f(x)的单调性并证明.
求解高一数学题,过程
1.已知f(x)=3|x|,求f(x)的单调区间
2.已知已知f(x)=x^3+x,x∈R,判断f(x)的单调性并证明.
求解高一数学题,过程1.已知f(x)=3|x|,求f(x)的单调区间2.已知已知f(x)=x^3+x,x∈R,判断f(x)的单调性并证明.
1.当x>0时,f(x)=3x,
在(0,+∞)上是单调递增函数
当x
1,讨论:
当x>0时,f(x)=3x,f(x)递增
当x<0,f(x)=-3x,f(x)递减
因此增区间为(0,+∞);
减区间为(-∞,0]
2,
f'(x)=3x^2+1>0恒成立
因此f(x)在R上递增
(1)f(x)=(x^(1/3)-x^(-1/3))/5
g(x)=(x^(1/3)+x^(-1/3))/5
X属于R
则有:f(-x)=[(-x)^(1/3)-(-x)^(-1/3)]/5
=[x^(-1/3)-x^(1/3)]/5
=-[x^(1/3)-x^(-1/3)]/5
=-f(x...
全部展开
(1)f(x)=(x^(1/3)-x^(-1/3))/5
g(x)=(x^(1/3)+x^(-1/3))/5
X属于R
则有:f(-x)=[(-x)^(1/3)-(-x)^(-1/3)]/5
=[x^(-1/3)-x^(1/3)]/5
=-[x^(1/3)-x^(-1/3)]/5
=-f(x)
g(-x)=[(-x)^(1/3)+(-x)^(-1/3)]/5
=[-x^(1/3)-x^(-1/3)]/5
=-[x^(1/3)+x^(-1/3)]/5
=-g(x)
设Y=T(X)=f(x)*g(x)
则有:T(-x)=f(-x)*g(-x)
=[-f(x)]*[-g(x)]
=f(x)g(x)
=T(x)
则y=f(x)*g(x)为偶函数
则有T(X)=f(x)*g(x)图像关于Y轴对称
又y=f(x)*g(x)
={[x^(1/3)-x^(-1/3)]/5}*{[x^(1/3)+x^(-1/3)]/5}
=[x^(2/3)-x^(-2/3)]/5
则任取X1,X2属于(0,+无穷)
且X1>X2
则有:X1^(1/3)>X2^(1/3)>0
0
=[x1^(2/3)-x1^(-2/3)]/5-{[x2^(2/3)-x2^(-2/3)]/5}
={[x1^(2/3)-x2^(2/3)]-[x1^(-2/3)-x2^(-2/3)]}/5
={[x1^(1/3)+x2^(1/3)]*[x1^(1/3)-x2^(1/3)]-
[x1^(-1/3)+x2^(-1/3)]*[x1^(-1/3)-x2^(-1/3)]}/5
又X1^(1/3)>X2^(1/3)>0
0
x1^(1/3)-x2^(1/3)>0
x1^(-1/3)+x2^(-1/3)>0
x1^(-1/3)-x2^(-1/3)<0
则:[x1^(1/3)+x2^(1/3)]*[x1^(1/3)-x2^(1/3)]>0,
[x1^(-1/3)+x2^(-1/3)]*[x1^(-1/3)-x2^(-1/3)]<0
则f(x1)-f(x2)
={[x1^(1/3)+x2^(1/3)]*[x1^(1/3)-x2^(1/3)]-
[x1^(-1/3)+x2^(-1/3)]*[x1^(-1/3)-x2^(-1/3)]}/5>0
即:X1>X2>0时,f(x1)>f(x2)
则T(X)在(0,+无穷)上单调递增
又y=T(X)=f(x)*g(x)为偶函数
则有T(X)在(-无穷,0)上单调递减
(2)f(4)-5f(2)*g(2)
=[4^(1/3)-4^(-1/3)]/5-5*{[2^(1/3)-2^(-1/3)]/5}*{[2^(1/3)+2^(-1/3)]/5}
=[4^(1/3)-4^(-1/3)]/5-{[2^(1/3)-2^(-1/3)]*[2^(1/3)+2^(-1/3)]/5}
=[4^(1/3)-4^(-1/3)]/5-[4^(1/3)-4^(-1/3)]/5
=0
同理可得:f(9)-5f(3)*g(3)=0
归纳得:f(x^2)-5f(x)g(x)=0
收起
1、当x>=0时,f(x)=3x,单调增;
当x<=0时,f(x)=-3x,单调减;
2、单调增,设x1>x2
f(x1)-f(x2)=(x1)³-(x2)³+(x1-x2)
=(x1-x2)(x1²+x2²+x1*x2)+(x1-x2)
=(x1-x2)(x1²+x2²+x1*x2+1)
...
全部展开
1、当x>=0时,f(x)=3x,单调增;
当x<=0时,f(x)=-3x,单调减;
2、单调增,设x1>x2
f(x1)-f(x2)=(x1)³-(x2)³+(x1-x2)
=(x1-x2)(x1²+x2²+x1*x2)+(x1-x2)
=(x1-x2)(x1²+x2²+x1*x2+1)
=(x1-x2)[(x1+0.5x2)²+0.75x2²+1]
因为x1>x2,(x1+0.5x2)²+0.75x2²+1恒大于0
所以f(x1)-f(x2)>0
即该函数单调增。
收起
1.画图可知(-∞,0)单调递减 (0,+∞)单调递增
2。求导数 f′(x)=3x^2+1 可知f′(x)恒大于0
所以单调区间为全体实数 单调递增