e∧(x+y)+cos(xy)=0,求dy/dx,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:36:37
e∧(x+y)+cos(xy)=0,求dy/dx,
x10 E–i'H$ ,P% +6*PZ1n*$6}_f=Q `eN-*M "Bdw ʦ(34-j}!!|xB ̺^QOq_s/"حK|KoHgEcJl<ĨKA*Su Q~:ONz_H9 ՟-۝xh

e∧(x+y)+cos(xy)=0,求dy/dx,
e∧(x+y)+cos(xy)=0,求dy/dx,

e∧(x+y)+cos(xy)=0,求dy/dx,
e∧(x+y)+cos(xy)=0,
两边对x求导,得
e^(x+y)*(1+y')-sin(xy)*(y+xy')=0
(e^(x+y)-xsin(xy))y'=ysin(xy)-e^(x+y)
所以
dy/dx=[ysin(xy)-e^(x+y)]/[e^(x+y)-xsin(xy)]

e^(x+y)+(cosxy)=0
e^(x+y)=-cosxy
[e^(x+y)]'=[-cosxy]'
(1+y')e^(x+y)=(y+xy')sinxy
e^(x+y)-ysinxy=xy'sinxy-y'e^(x+y)
y'=[e^(x+y)-ysinxy] / [xsinxy-e^(x+y)]