如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.求AD的长.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 13:26:54
如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.求AD的长.
如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.求AD的长.
如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.求AD的长.
因为你已经证明在直角三角形PBQ中,∠PBQ=30°,∠BPQ=60°(定理:在直角三角形中,30°所对的边是斜边的一半)也就是说,∴PB=2PQ=6
∵∠BPQ=60°,PQ/PB=cos60=1/2
∴PB=2PQ
∵△ABC为等边三角形,
∴AB=CA,∠BAE=∠ACD=60°;
又∵AE=CD,
在△ABE和△CAD中,
AB=CA∠BAE=∠ACDAE=CD
∴△ABE≌△CAD;
∴BE=AD,∠CAD=∠ABE;
∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;
∵BQ⊥AD,
∴∠AQB=...
全部展开
∵△ABC为等边三角形,
∴AB=CA,∠BAE=∠ACD=60°;
又∵AE=CD,
在△ABE和△CAD中,
AB=CA∠BAE=∠ACDAE=CD
∴△ABE≌△CAD;
∴BE=AD,∠CAD=∠ABE;
∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;
∵BQ⊥AD,
∴∠AQB=90°,则∠PBQ=90°-60°=30°;
∵PQ=3,
∴在Rt△BPQ中,BP=2PQ=6;
又∵PE=1,
∴AD=BE=BP+PE=7.
收起
直角三角形中30度所对的直角边等于斜边的一半
∵∠BPQ=60°
∵∠BQP=90°
∴∠PBQ=30°
∵△ABC为等边三角形,
∴AB=CA,∠BAE=∠ACD=60°;
又∵AE=CD,
在△ABE和△CAD中,
AB=CA∠BAE=∠ACDAE=CD
∴△ABE≌△CAD;
∴BE=AD,∠CAD=∠ABE;
∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;
∵BQ⊥AD,
∴∠AQB=...
全部展开
∵△ABC为等边三角形,
∴AB=CA,∠BAE=∠ACD=60°;
又∵AE=CD,
在△ABE和△CAD中,
AB=CA∠BAE=∠ACDAE=CD
∴△ABE≌△CAD;
∴BE=AD,∠CAD=∠ABE;
∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;
∵BQ⊥AD,
∴∠AQB=90°,则∠PBQ=90°-60°=30°;
∵PQ=3,
∴在Rt△BPQ中,BP=2PQ=6;
又∵PE=1,
∴AD=BE=BP+PE=7.
收起
完整的应该是“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。”书上有