已知数列{an}的前n项和为Sn,且Sn= ,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡(1)求an,bn;(2)求数列{an·bn}的前n项和Tnsn=2n^2+n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:43:38
已知数列{an}的前n项和为Sn,且Sn= ,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡(1)求an,bn;(2)求数列{an·bn}的前n项和Tnsn=2n^2+n
xV_oE*"c HyqުڳЮMR""Hň M!G)wv]GWVCuݙoG.{/6f^? "- Ȉ·~/}qmt;;z….77/ï 7vt=EF@CfMWD[xDKPt{Z.,5l˼_yh_xK;ͳFl>oT?VW*oڟ/s:nlBVUVuÜ]+⢛.F\R˫̧~ԂP_(XUF\"e|ŵJb}X ]vrt%%L~~_=INg^Ha \=Dv- a K@NjDj#3Nl`P]I@7n S'\5gQeЂ%’m"M8xSIk6MJdira^8(± &0% }VhDEX%RP]$Vs`&IEQ!5bM 1!TJ@1iA9ݝ'C $L8ݣ?,0Mn0&8 ~8j*to Q+_^4,,j=|k=X&Ğ%sxXDZ&js1{s_h ̘w4t9r"k&ЄᝅT/}ٺ~kˣt|`p @

已知数列{an}的前n项和为Sn,且Sn= ,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡(1)求an,bn;(2)求数列{an·bn}的前n项和Tnsn=2n^2+n
已知数列{an}的前n项和为Sn,且Sn= ,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡
(1)求an,bn;(2)求数列{an·bn}的前n项和Tn
sn=2n^2+n

已知数列{an}的前n项和为Sn,且Sn= ,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡(1)求an,bn;(2)求数列{an·bn}的前n项和Tnsn=2n^2+n

题目不全,请完善

(1)当n = 1时,A1=S1 = 3,
当n >= 2时,An = Sn-Sn-1 = 2n*n+n -2(n-1)*(n-1)-(n-1) = 4n - 1,
又因为A1= 3满足,所以 An = 4n - 1,
所以4n-1=4log2bn+3
log2bn=n-1
bn=2^(n-1)
(2)tn=anbn=(4n-1)*2^(n...

全部展开

(1)当n = 1时,A1=S1 = 3,
当n >= 2时,An = Sn-Sn-1 = 2n*n+n -2(n-1)*(n-1)-(n-1) = 4n - 1,
又因为A1= 3满足,所以 An = 4n - 1,
所以4n-1=4log2bn+3
log2bn=n-1
bn=2^(n-1)
(2)tn=anbn=(4n-1)*2^(n-1)
Tn=3*2^0+7*2+11*2^2+...+(4n-1)*2^(n-1)
2Tn=3*2+7*2^2+11*2^3+...+(4n-1)*2^n
Tn-2Tn=3+4[2+2^2+...+2^(n-1)]-(4n-1)*2^n
-Tn=3+4*2(2^(n-1)-1)/(2-1)-(4n-1)*2^n=3+4*2^n-8-4n*2^n+2^n=2^(n+2)*(1-n)+2^n-5
即有Tn=5-2^(n+2)*(1-n)-2^n

收起

亲 且sn等于什么?

(1)
Sn=2n²+n
S[n+1]=2(n+1)²+(n+1)=2n²+5n+3
∴a[n+1]=S[n+1]-Sn=4n+3=4(n+1)-1

∴an=4n-1

an=4log2bn+3
即4n-1=4log2bn+3
4log2bn=4n-4
log2bn=n-1
...

全部展开

(1)
Sn=2n²+n
S[n+1]=2(n+1)²+(n+1)=2n²+5n+3
∴a[n+1]=S[n+1]-Sn=4n+3=4(n+1)-1

∴an=4n-1

an=4log2bn+3
即4n-1=4log2bn+3
4log2bn=4n-4
log2bn=n-1

∴bn=2^(n-1)

-----------------------
(2)
an*bn=(4n-1)*2^(n-1)

Tn
=a1*b1+a2*b2+a3*b3+...+an*bn

2Tn
=2a1b1+2a2b2+2a3b3+...+2anbn

2Tn-Tn
=(2a1b1-a2b2)+(2a2b2-a3b3)+(2a3b3-a4b4)+...+(2a[n-1]b[n-1]-anbn)+2anbn-a1b1
=(a1b2-a2b2)+(a2b3-a3b3)+(a3b4-a4b4)+...+(a[n-1]bn-anbn)+2anbn-a1b1
=-4*2^1-4*2^2-4*2^3-...-4*2^(n-1) +2*(4n-1)*2^(n-1)-3*1
=-4*(2^n -2) + (4n-1)*2^n - 3
=(4n-5)*2^n +5

∴Tn=(4n-5)*2^n +5

没验算,不知道对不对。计算太麻烦了。

收起