求直线x=0,x=2,y=0与曲线y=x²所围成的曲边梯形的面积.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 17:38:56
求直线x=0,x=2,y=0与曲线y=x²所围成的曲边梯形的面积.
x){-w5Щ5ҩ5xM@J #g Ogoy1ԋ};-Zt" Eϗ׳I*ҧav6Tvۣiuv<۴{:2+l8#H?/ZP?O3H[B?jXfBTYkijjH}3~Ab[{6}۟.Yl6zl !`<[Yﺧf=ܥ//~ڶOvz9}E3CkkQl R

求直线x=0,x=2,y=0与曲线y=x²所围成的曲边梯形的面积.
求直线x=0,x=2,y=0与曲线y=x²所围成的曲边梯形的面积.

求直线x=0,x=2,y=0与曲线y=x²所围成的曲边梯形的面积.
△S≈△Sn=f(i/n)△x=(i/n)^2△x
=2/n[(1/n)^2+(2/n)^2+…+(n/n)^2]
=8/n^3(n+1)(2n+1)/6
=8/3+4/n+4/3n^2
当n趋近于无穷大时,△Sn=8/3

根据定积分来解决这个问题
面积=8|3