已知二次函数f(1+X)=f(1-X),且f(0)=0,f(1)=1,若在区间[m,n],上值域为[m,n],则m=(),n=()如题.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:36:02
已知二次函数f(1+X)=f(1-X),且f(0)=0,f(1)=1,若在区间[m,n],上值域为[m,n],则m=(),n=()如题.
已知二次函数f(1+X)=f(1-X),且f(0)=0,f(1)=1,若在区间[m,n],上值域为[m,n],则m=(),n=()
如题.
已知二次函数f(1+X)=f(1-X),且f(0)=0,f(1)=1,若在区间[m,n],上值域为[m,n],则m=(),n=()如题.
不难看出对称轴x=1
所以f(0)=f(2)=0
(1,1)(0,0)(2,0),利用三点求出解析式
f(x)=-x^2+2x
分类讨论,已知默认m
m=0,n=1
f(1+x)=f(1-x),f(x)关于x=1对称。
f(0)=0,f(1)=1
f(0)
n>m
n<1时,f(n)>f(m)
设二次函数方程为y=a(x-1)^2+1
x=0 y=0代入,得
a+1=0 a=-1
函数方程为y=-(x-1)^2+1=-x^...
全部展开
f(1+x)=f(1-x),f(x)关于x=1对称。
f(0)=0,f(1)=1
f(0)
n>m
n<1时,f(n)>f(m)
设二次函数方程为y=a(x-1)^2+1
x=0 y=0代入,得
a+1=0 a=-1
函数方程为y=-(x-1)^2+1=-x^2+2x
n>m
n<1时,函数单调递增
f(n)=-n^2+2n=n
f(m)=-m^2+2m=m
解得n=1,m=0(舍去)
m>1时,函数单调递减
f(m)=n
-m^2+2m=n (1)
m^2-2m+n=0
n^2-2n+m=0
f(n)=m
-n^2+2n=m (2)
(1)-(2)
(n^2-m^2)-2(n-m)=n-m
整理,得
m+n=3
1在[m,n]上时,f(x)在顶点处取得最大值,此时x=1 y=1 n=1
f(m)=m
-m^2+2m=m,解得m=0
综上,得m,n的取值范围为m>1且m+n=3或m=0 n=1
作为填空题,题目本身有问题。
收起