已知α,β,γ是有理数,且α+β+γ=0,则α²+β²+γ²‐βγ‐γα‐αβ=( )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 22:23:17
已知α,β,γ是有理数,且α+β+γ=0,则α²+β²+γ²‐βγ‐γα‐αβ=( )
xTN0NLQRJAPD^ !C+@"Tئ?")LƤq!P?=n^ Y [Oc_gmPFhܷx,l{ 3"&ȏ32ǧNN໻ 2/wrFUD%ZJLJR**hD(ѣH$\xh)_t,0T%ዱWU211S';G'r+7Ƕmi)m亦l-r$W/'SJnщtgn {*J`)]c4p'S}j:n30

已知α,β,γ是有理数,且α+β+γ=0,则α²+β²+γ²‐βγ‐γα‐αβ=( )
已知α,β,γ是有理数,且α+β+γ=0,则α²+β²+γ²‐βγ‐γα‐αβ=( )

已知α,β,γ是有理数,且α+β+γ=0,则α²+β²+γ²‐βγ‐γα‐αβ=( )
α²+β²+γ²‐βγ‐γα‐αβ
=1/2×2(α²+β²+γ²‐βγ‐γα‐αβ)
=1/2×(α²+β²+γ²+α²+β²+γ²‐2βγ‐2γα‐2αβ)
=1/2×[(α-β)²+(β-γ)²+(α-γ)²]
∵(α-β)²≥0
(β-γ)²≥0
(α-γ)²≥0
∴(α-β)²=0
(β-γ)²=0
(α-γ)²=0
∴α=β=γ
∵α+β+γ=0
∴α=β=γ=0
∴原式=0

α²+β²+γ²‐βγ‐γα‐αβ
=1/2×2(α²+β²+γ²‐βγ‐γα‐αβ)
=1/2×(α²+β²+γ²+α²+β²+γ²‐2βγ‐2γα‐2αβ)
=1/2×[(α-β)²+(β-γ)²+(α-γ)²]
...

全部展开

α²+β²+γ²‐βγ‐γα‐αβ
=1/2×2(α²+β²+γ²‐βγ‐γα‐αβ)
=1/2×(α²+β²+γ²+α²+β²+γ²‐2βγ‐2γα‐2αβ)
=1/2×[(α-β)²+(β-γ)²+(α-γ)²]
∵(α-β)²≥0
(β-γ)²≥0
(α-γ)²≥0
∴(α-β)²=0
(β-γ)²=0
(α-γ)²=0
∴α=β=γ
∵α+β+γ=0
∴α=β=γ=0
∴原式=0

收起

α2+β2+γ2‐βγ‐γα‐αβ
=1/2×2(α2+β2+γ2‐βγ‐γα‐αβ)
=1/2×(α2+β2+γ2+α2+β2+γ2‐2βγ‐2γα‐2αβ)
=1/2×[(α-β)2+(β-γ)2+(α-γ)2]
(α-β)2≥0
(β-γ)2≥0
(α-γ2≥0
(α-β)2=0
(β-γ)2=0
(α-γ)2=0

全部展开

α2+β2+γ2‐βγ‐γα‐αβ
=1/2×2(α2+β2+γ2‐βγ‐γα‐αβ)
=1/2×(α2+β2+γ2+α2+β2+γ2‐2βγ‐2γα‐2αβ)
=1/2×[(α-β)2+(β-γ)2+(α-γ)2]
(α-β)2≥0
(β-γ)2≥0
(α-γ2≥0
(α-β)2=0
(β-γ)2=0
(α-γ)2=0
∴α=β=γ
∵α+β+γ=0
∴α=β=γ=0
∴原式=0

收起