如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.(1)求抛物线的解析式,并

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:11:52
如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.(1)求抛物线的解析式,并
xW[SI+JJ*B%Zlr]|Hj_" p \ \LB ONdFuwLKK_́6(-_K}!:-RȫR0ļ =G#M~Z?t{X>zMR#{K{xSN.h+Nx :]Mل]5jv\NJ<IDIH-Ni_8Cۆ=w`W_h f<½O@ἴ O )uma>E.v:[ ݂1.jo6ۉu~|<,(cyf́4Xn'*->tIS"%6g)V.`"/]ClxM=E ]([ q*& /abqϡ7OJzm^6?+4 9ea#Yi |[U&큃D)09ēL6 w&uִr̨bʏj+x_zBګfx>qPhBk+2]&`"Z*e$eMJn3'Poy`NX}ҋ2IWXB7f= 噍(S!/}k H6$L!faqظf*k[49/D#UV1_Wifrն%6KTq{YjB 7*,pU~զ_qxKm^o뵛A/8 /F&UodصWhzݾX \tJiGLyﯺ 0 ^5x*cC&A)a⊏[9"N\#Lvd2T.:%‡<;/&!/շF%ghhDgw@uu*Zk?ݥ{*Qzgo ( NHKPGK[9va#Pk[ ZJdJcc (Yw!N?&ȁ. qW7 O}' zǏ{*IBBG )P$xHJTD2x ݯ2:0Üh[iR]|* J DU)Ơ1+.Tb~q1+QO>hajQ1t8Xn~C|ܾ_^mo9v<)ꉥ|/_y!#Y~$M++5y077س 9=JN/#F |)[\UgO2 ֜eyFm'P=j . 9P}74#N]ͭQкidžx-93$zl{П|g#4P\Ϛ@{"= d$KSs9F! C+s񑁨֭Vw?({s

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.(1)求抛物线的解析式,并
如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为S,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值;
(3)在(2)的条件下,当S取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.
呵呵 你们回答得都很好 不过不用了

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.(1)求抛物线的解析式,并
(1)根据A,B,C三点的坐标,可以运用交点式法求得抛物线的解析式.再根据顶点的坐标公式求得抛物线的顶点坐标;
(2)根据B,D的坐标运用待定系数法求得直线BD的解析式,再根据三角形的面积公式以及y与x之间的函数关系式得到s与x之间的函数关系式.点P的横坐标即x的值位于点D和点B的横坐标之间.根据二次函数的顶点式即可分析其最值;
(3)根据(2)中的坐标得点E和点C重合.过P′作P′H⊥y轴于H,P′F交y轴于点M.要求P′H和OH的长.P′H的长可以运用直角三角形P′CM的面积进行计算.设MC=m,则MF=m,P′M=3-m,P′E= 32.根据勾股定理列方程求解,得到直角三角形P′CM的三边后,再根据直角三角形的面积公式进行计算.要求OH的长,已知点C的坐标,只需根据勾股定理进一步求得CH的长即可.把求得的点P的坐标代入抛物线解析式即可判断点P′是否在该抛物线上.
(1)设y=a(x+1)(x-3),(1分)
把C(0,3)代入,得a=-1,(2分)
∴抛物线的解析式为:y=-x2+2x+3.(4分)
顶点D的坐标为(1,4).(5分)
(2)设直线BD解析式为:y=kx+b(k≠0),把B、D两点坐标代入,
得 {3k+b=0k+b=4,(6分)
解得k=-2,b=6.
∴直线AD解析式为y=-2x+6.(7分)
s= 12PE•OE= 12xy= 12x(-2x+6)=-x2+3x,(8分)
∴s=-x2+3x(1<x<3)(9分)
s=-(x2-3x+ 94)+ 94=-(x- 32)2+ 94.(10分)
∴当 x=32时,s取得最大值,最大值为 94.(11分)
(3)当s取得最大值,x=32,y=3,
∴ P(32,3).(5分)
∴四边形PEOF是矩形.
作点P关于直线EF的对称点P′,连接P′E、P′F.
法一:过P′作P′H⊥y轴于H,P′F交y轴于点M.
设MC=m,则MF=m,P′M=3-m,P′E= 32.
在Rt△P′MC中,由勾股定理,(32)2+(3-m)2=m2.
解得m= 158.
∵CM•P′H=P′M•P′E,
∴P′H= 910.
由△EHP′∽△EP′M,可得 EHEPʹ=EPʹEM,EH= 65.
∴OH=3- 65=95.
∴P′坐标 (-910,95).(13分)
法二:连接PP′,交CF于点H,分别过点H、P′作PC的垂线,垂足为M、N.
易证△CMH∽△HMP.
∴ CMMH=MHPM=12.
设CM=k,则MH=2k,PM=4k.
∴PC=5k= 32,k= 310.
由三角形中位线定理,PN=8k= 125,P′N=4k= 65.
∴CN=PN-PC= 125- 32= 910,即x=- 910.
y=PF-P′N=3- 65=95
∴P′坐标(- 910,95).(13分)
把P′坐标(- 910,95)代入抛物线解析式,不成立,所以P′不在抛物线上.(14分)

aetaqeytit790yp (1)根据A,B,C三点的坐标,可以运用交点式法求得抛物线的解析式.再根据顶点的坐标公式求得抛物线的顶点坐标;
(2)根据B,D的坐标运用待定系数法求得直线BD的解析式,再根据三角形的面积公式以及y与x之间的函数关系式得到s与x之间的函数关系式.点P的横坐标即x的值位于点D和点B的横坐标之间.根据二次函数的顶点式即可分析其最值;
(3)根据(...

全部展开

aetaqeytit790yp (1)根据A,B,C三点的坐标,可以运用交点式法求得抛物线的解析式.再根据顶点的坐标公式求得抛物线的顶点坐标;
(2)根据B,D的坐标运用待定系数法求得直线BD的解析式,再根据三角形的面积公式以及y与x之间的函数关系式得到s与x之间的函数关系式.点P的横坐标即x的值位于点D和点B的横坐标之间.根据二次函数的顶点式即可分析其最值;
(3)根据(2)中的坐标得点E和点C重合.过P′作P′H⊥y轴于H,P′F交y轴于点M.要求P′H和OH的长.P′H的长可以运用直角三角形P′CM的面积进行计算.设MC=m,则MF=m,P′M=3-m,P′E= 32.根据勾股定理列方程求解,得到直角三角形P′CM的三边后,再根据直角三角形的面积公式进行计算.要求OH的长,已知点C的坐标,只需根据勾股定理进一步求得CH的长即可.把求得的点P的坐标代入抛物线解析式即可判断点P′是否在该抛物线上.
(1)设y=a(x+1)(x-3),(1分)
把C(0,3)代入,得a=-1,(2分)
∴抛物线的解析式为:y=-x2+2x+3.(4分)
顶点D的坐标为(1,4).(5分)
(2)设直线BD解析式为:y=kx+b(k≠0),把B、D两点坐标代入,
得 {3k+b=0k+b=4,(6分)
解得k=-2,b=6.
∴直线AD解析式为y=-2x+6.(7分)
s= 12PE•OE= 12xy= 12x(-2x+6)=-x2+3x,(8分)
∴s=-x2+3x(1<x<3)(9分)
s=-(x2-3x+ 94)+ 94=-(x- 32)2+ 94.(10分)
∴当 x=32时,s取得最大值,最大值为 94.(11分)
(3)当s取得最大值, x=32,y=3,
∴ P(32,3).(5分)
∴四边形PEOF是矩形.
作点P关于直线EF的对称点P′,连接P′E、P′F.
法一:过P′作P′H⊥y轴于H,P′F交y轴于点M.
设MC=m,则MF=m,P′M=3-m,P′E= 32.
在Rt△P′MC中,由勾股定理, (32)2+(3-m)2=m2.
解得m= 158.
∵CM•P′H=P′M•P′E,
∴P′H= 910.
由△EHP′∽△EP′M,可得 EHEPʹ=EPʹEM,EH= 65.
∴OH=3- 65=95.
∴P′坐标 (-910,95).(13分)
法二:连接PP′,交CF于点H,分别过点H、P′作PC的垂线,垂足为M、N.
易证△CMH∽△HMP.
∴ CMMH=MHPM=12.
设CM=k,则MH=2k,PM=4k.
∴PC=5k= 32,k= 310.
由三角形中位线定理,PN=8k= 125,P′N=4k= 65.
∴CN=PN-PC= 125- 32= 910,即x=- 910.
y=PF-P′N=3- 65=95
∴P′坐标(- 910, 95).(13分)
把P′坐标(- 910,95)代入抛物线解析式,不成立,所以P′不在抛物线上

收起

如图 在平面直角坐标系中 已知抛物线y=ax^+2x+3(a 已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,对称轴是直线x= 1/3.则下列结论中,正确的已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,对称轴是直线x=1/3 .则 求文档:正方形ABCD在如图所示的平面直角坐标系中,A在x轴正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴负半轴上,AB交y轴负半轴于E,BC交x轴负半轴于F,OE=1,抛物线y=ax²+bx-4过 在平面直角坐标系中,抛物线y=3x²+5x-2与x轴的交点有 在平面直角坐标系中,抛物线y=x²-1与x轴的交点个数是 在平面直角坐标系中,抛物线y=x-1与x轴的交点的个数是() 在平面直角坐标系中,抛物线Y=X*X-1与X轴的交点的个数是几个 如图所示,在平面直角坐标系中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O,M如图所示,在平面直角坐标系中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边 如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线 在平面直角坐标系中,若抛物线y=(x-2)平方+1关于原点作对称交换 则所得的新抛物线的解析式为 在平面直角坐标系中,将抛物线y=x^2+2x+3绕点(-1,0)旋转180度,得到的新抛物线的解析式? 在平面直角坐标系xoy中,已知抛物线y²=2px上横坐标为4的点到抛物线的焦点距 在平面直角坐标系中,平移抛物线y=-x²+2x-8,使它经过原点,写出平移后抛物线的一个解析式 在平面直角坐标系中,向右平移抛物线y=x方+6x+8使他经过原点,写出平移后抛物线的一个解析式! 在平面直角坐标系xoy中,抛物线y=ax^2+bx+c经过A(3.0),B(5.0),c(0.5)三点,1.求此抛物线的解析式 .在平面直角坐标系xoy中,抛物线y=ax^2+bx+c经过A(3.0),B(5.0),c(0.5)三点,1.求此抛物线的解析式 .2.设抛物线 如图,在平面直角坐标系中,抛物线y=ax^2+bx+c(a≠0)的图像经过M(1,0)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点.点P从B点出发出发以每秒0.1个单位的速度沿 在平面直角坐标系中,将抛物线y=2x的平方沿y轴向上平移1个单位,再沿x轴向右平移两个单位, 在平面直角坐标系中,如果抛物线Y=2X^2不动,把X轴,Y轴分别向上,向右平移2个单位那么在新坐标系下抛物线的解析式是什么?