已知函数f(x)=lnx,g(x)=e∧x(1)若函数ψ(x)=-x+f(-x),当x∈[-e,0)时求ψ(x)的值域(2)�已知函数f(x)=lnx,g(x)=e∧x(1)若函数ψ(x)=-x+f(-x),当x∈[-e,0)时求ψ(x)的值域(2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 23:18:09
已知函数f(x)=lnx,g(x)=e∧x(1)若函数ψ(x)=-x+f(-x),当x∈[-e,0)时求ψ(x)的值域(2)�已知函数f(x)=lnx,g(x)=e∧x(1)若函数ψ(x)=-x+f(-x),当x∈[-e,0)时求ψ(x)的值域(2
xUn"Gnu5x Hg3jYɦ@fa~ c f/TU(@U{Ͻ[ՉEz{ˆ\,O3omm †ol:3ņg)3MbسZ] }: qѫO{ɿz 7n<-A6Zo`34H]uJyij7PbL} vvi\ o40k5q}&+hZd\4ǰ昖<h[;bM)"ܫQ/ Xc:|:?Ӝ/ߗ=Fu_ML#.D%Bu(Twv&C+"#IJjV=J S,)e1Nyqg)rT7J\E>rϱ{,ΒËn]?b'n[SBGy _tPQzd9Yhv9D/M뚍q1I'/3\O TDUQ L#?|\ǰZw&Ez&SVtr14LtrH2 ؈dc"BP`1GD4yQORA80cASs6[lH? M\\-Zi,y|tfnQPK1 1iy-Lz|YNp`}a"3nQ"DH^{9P M{e+."DsoOÝ8wC[axsy㙒5>ؓwLe&e"6[n6)pgO>7"q.j@L[[85$/!:0݌'5od?9b$6 `* "DeS*_D7Zuz'8g{wk9O?|-@휈IDX^]

已知函数f(x)=lnx,g(x)=e∧x(1)若函数ψ(x)=-x+f(-x),当x∈[-e,0)时求ψ(x)的值域(2)�已知函数f(x)=lnx,g(x)=e∧x(1)若函数ψ(x)=-x+f(-x),当x∈[-e,0)时求ψ(x)的值域(2
已知函数f(x)=lnx,g(x)=e∧x(1)若函数ψ(x)=-x+f(-x),当x∈[-e,0)时求ψ(x)的值域(2)�
已知函数f(x)=lnx,g(x)=e∧x(1)若函数ψ(x)=-x+f(-x),当x∈[-e,0)时求ψ(x)的值域(2)设直线l为函数f(x)的图像上的一点A(x,f(x))处切线,证明在区间(1,+∞)上存在唯一的x使得直线l与曲线g(x)相切

已知函数f(x)=lnx,g(x)=e∧x(1)若函数ψ(x)=-x+f(-x),当x∈[-e,0)时求ψ(x)的值域(2)�已知函数f(x)=lnx,g(x)=e∧x(1)若函数ψ(x)=-x+f(-x),当x∈[-e,0)时求ψ(x)的值域(2
1、若函数ψ(x)=f(x)-((x+1)/(x-1)),求函数ψ(x)的单调区间
2、设直线l为函数y=f(x)的图象上一点A(x0,f(x0))处的切线,证明:在区间(1,+无穷)上存在唯一的x0,使得直线与曲线y=g(x)相切
(1).ψ(x)=lnx-[(x+1)/(x-1)],定义域:x>0,且x≠1.
ψ′(x)=(1/x)-[(x-1)-(x+1)]/(x-1)=(1/x)+2/(x-1)=[(x-1)+2x]/[x(x-1)]=(x+1)/[x(x-1)]
由于x>0,故在其定义域内恒有ψ′(x)>0,即在其定义域(0,1)∪(1,+∞)内,ψ(x)都是单调增加.
(2).f(x)=lnx,f′(x)=1/x,当x=e^(n/e)(n∈N+)时,f′[e^(n/e)]=1/[e^(n/e)];故y=f(x)上存在一点
(e^(n/e),n/e),过该点的切线方程为
y=[1/e^(n/e)][x-e^(n/e)]+n/e=[1/e^(n/e)]x+(n-e)/e.(1)
g(x)=e^x,g′(x)=e^x,当x=-n/e时,g′(-n/e)=e^(-n/e)=1/[e^(n/e)],故过y=g(x)上的点
(-n/e,1/e^(n/e))的切线方程为
y=[1/e^(n/e)][x+(n/e)]+1/e^(n/e)=[1/e^(n/e)]x+[1/e^(n/e)](n+e)/e.(2)
两条切线(1)和(2)的斜率相同,只要它们在y轴上的截距相等,它们就是同一条切线,为此令:
(n-e)/e=[1/e^(n/e)](n+e)/e),得n-e=[1/e^(n/e)](n+e),e^(n/e)=(n+e)/(n-e).(3)
(3)是一个超越方程,但从理论上讲,由于(3)的左边是关于n的增函数;而其右边,
当n≧3以后,是一个正的假分数,因此是关于n的减函数,故在区间[3,+∞)内必存在一个实
数n(不一定是自然数),使得(3)式成立.这就证明了“在区间(1,+∞)上存在唯一的x0,使
得直线与曲线y=g(x)相切”.
以上只是一个“存在性”证明,n究竟是多少,要用计算机求解,已超出中学的教学要求.

已知函数f(x)=e^x(m-lnx)函数g(x)=x-lnx-f(x)'/e^x已知函数f(x)=e^x(m-lnx)函数g(x)=x-lnx-f(x)’/e^x,的最小值为1,其中f(x)‘为f(x)的导函数,求m的值 已知函数f(x)=e∧x+ax,g(x)=ax-lnx,其中a 已知函数f(x)=mx-m/x g(x)=2lnx 若x£(1,e],不等式f(x)-g(x) 已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)1,求函数f(x)在区间(0,e】上的最小值. 已知函数f(x)=lnx,g(x)=e∧x(1)若函数ψ(x)=-x+f(-x),当x∈[-e,0)时求ψ(x)的值域(2)�已知函数f(x)=lnx,g(x)=e∧x(1)若函数ψ(x)=-x+f(-x),当x∈[-e,0)时求ψ(x)的值域(2 已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数),急死了快已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)1,求函数f(x)在区间(0,e】上的最小值.2)是否 已知a∈R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)1,求函数f(x)在区间(0,e】上的最小值.2)是否存在实数x0∈(0, 已知函数f(x)=lnx+k/e^x 已知函数f(x)=x-lnx,g(x)=lnx/x,求证f(x)>g(x)+1/2 已知函数f(x)=x∧2/lnx,已知函数f(x)=x^2/lnx,(1)求函数f(x)的单调区间(2)若g(x)=f(x)+(4m^2-4mx)/lnx(其中m为常数),且当0<m<1/2时,设函数g(x)的3个极值点为a、b、c,且a<b<c,证明a+c>2/√2/√e 已知函数f(x)=-e^x,g(x)=lnx,e为自然对数的底数求证:方程f(x)=g(x)有唯一实数根 已知e是自然数的底数,函数f(x)=e^x+x-2的零点为a,函数g(x)=lnx+x-2的零点为b,则下列不等式中成立的是( )A、f(a) 已知函数f(x)=lnx.(1)求函数g(x)=f(x+1)-x的最大值(2)若对任意x>0,不等式f(x) 已知函数f(x)=e^x-ax-1(a为实数,g(x)=lnx-x(1)讨论函数f(x)的单调区间(2)求函数g(x)的极值(3)求证:lnx小于x小于e^x(x大于0) 已知f(x)=x/lnx,e 已知函数f(x)=e^x,g(x)=lnx.若F(x)=1-(a/x)-g(x)(a属于R)在区间(0,2)上无极值,求a取值范围 已知f(x)=a/x+lnx,x属于(0,e】,g(x)=lnx/x,其中e是自然数,a∈R,求证a=1时,f(x)>g(x)+1/2 具体来 已知函数f(x)=lnx-f’(1)x+ln(e/2) (1) 求f’(2) (2) 求f(x)的单调区间和极值 (3) 设a≥1,函数g(x)=已知函数f(x)=lnx-f’(1)x+ln(e/2) (1) 求f’(2) (2) 求f(x)的单调区间和极值 (3) 设a≥1,函数g(x)=