已知函数f(x)=x^2+ax+3,当x∈R时,f(x)≥a恒成立,求a的范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:33:32
已知函数f(x)=x^2+ax+3,当x∈R时,f(x)≥a恒成立,求a的范围.
x){}K}6uCFmEvbӽ+ut=M$siI:&<_ݭlcSY-/zޢgTO- lQ4ؾQoggo4bOvR@e{dR 0HS %Ϧ**$B"&F6yvsnl@| gsnڰOv=_ $!NT3gɫN\~O;/b'{{]i []lZdgAvh]3X$B

已知函数f(x)=x^2+ax+3,当x∈R时,f(x)≥a恒成立,求a的范围.
已知函数f(x)=x^2+ax+3,当x∈R时,f(x)≥a恒成立,求a的范围.

已知函数f(x)=x^2+ax+3,当x∈R时,f(x)≥a恒成立,求a的范围.
已知函数f(x)=x^2+ax+3,当x∈R时,f(x)≥a恒成立,
f(x)=x^2+ax+3=(x+a/2)^2-a^2/4+3,
因为 (x+a/2)^2≥0,
所以 f(x)≥ -a^2/4+3;
已知 当x∈R时,f(x)≥a恒成立,
故 -a^2/4+3 >= a,
a^2+4a-12

就是说函数的最小值大于等于a
函数的最小值在哪呢,对称轴的位置。即x=-a/2
那么a^2+4a-12>=0
a的范围是[-6,2]