∫1/(X+1)(X+3) dx.
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 06:37:16
x0_FHMZX| EwG_!!c.?oJM*i2EbPc/mP Rѡ]p@,/ &B>%i Bn4Tf;vPovFxy,vy¡˽k1(L(~H}QiP
~a4 NHOQE@l@Lod
∫1/(X+1)(X+3) dx.
∫1/(X+1)(X+3) dx.
∫1/(X+1)(X+3) dx.
∫ dx/[(x + 1)(x + 3)]
= (1/2)∫ [(x + 3) - (x + 1)]/[(x + 1)(x + 3)] dx
= (1/2)∫ [1/(x + 1) - 1/(x + 3)] dx
= (1/2)[ln| x + 1 | - ln| x + 3 |] + C
= (1/2)ln| (x + 1)/(x + 3) | + C
= ln√[(x + 1)/(x + 3)] + C
原式=积分1/2[1/(X+1)-1/(X+3)]dx
=1/2积分[d(x+1)/(x+1)-d(x+3)/(x+3)]
=1/2[ln(x+1)-ln(x+3)]+C
=1/2ln(x+1)/(x+3)+C