若a2=5a-3和b2=5b-3,其中a不等于b 求a4+a2b2+b4/a3+b3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 18:15:37
若a2=5a-3和b2=5b-3,其中a不等于b 求a4+a2b2+b4/a3+b3
xRjP~i2"b2-mժlɘ6p*2M_νIv2+'ΏP)E6:o "-~|}gQ[,QĐ,b{e<ܨ OONm bK(WGńr5ܔ Z= Irt>ݻfg7c4f8bv<>&õdMM" i.QPRRBeCQҗQWe7<> 1jHV1s:V1A n,&7*ȟ5o3^L4Vu#Ŵ+u -Y0>߀>><>AGX6b'%ɻB6qu,7a{\3"faͼkj"{(oPۗa;?ૠ\FEdmlKi yzOSJ?!\A*4QJg==df1 &/G=YW!,"ł%JHBG"QS5w1AƋ̚eed=Ơ

若a2=5a-3和b2=5b-3,其中a不等于b 求a4+a2b2+b4/a3+b3
若a2=5a-3和b2=5b-3,其中a不等于b 求a4+a2b2+b4/a3+b3

若a2=5a-3和b2=5b-3,其中a不等于b 求a4+a2b2+b4/a3+b3
a²-5a+3=0
b²-5b+3=0
所以a和b是方程x²-5x+3=0的根
由韦达定理
a+b=5
ab=3
则a²+b²=(a+b)²-2ab=19
原式=[a^4+2a²b²+b^4-a²b²]/(a+b)(a²-ab+b²)
=[(a²+b²)²-a²b²]/(a+b)(a²-ab+b²)
=(361-9)/[5*(19-3)]
=22/5

若a2=5a-3和b2=5b-3,由此可得出,a b是方程x^2-5x+3=0的两个解,由韦达定理可得:a+b=5,ab=3,然后再代入a4+a2b2+b4/a3+b3
整理一下,应该就可以得到代数式的结果。

则a,b为方程x^2=5x-3的二个根,x1*x2=a*b=3;x1+x2=a+b=5/2;然后把要求的变成含(a*b)和 (a+b)的式子

由a2=5a-3和b2=5b-3,可知a、b是方程x^2-5x+3=0的两个根
a+b=5,ab=3
(a4+a2b2+b4)/(a3+b3)
=[(a^2+b^2)^2-a^2b^2]/[(a+b)(a^2+b^2-ab)]
={[(a+b)^2-2ab]^2-(ab)^2}/{(a+b)[(a+b)^2-3ab]}
={[(5^2-2*3]^2-3^2}/{5[5^2-3*3]}
=(19^2-9)/[5*(25-9)]
=(361-9)/(5*16)
=352/80
=22/5
=4.4