数列{an}中a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0求通项公式(2)设Sn=‖a1‖+‖a2‖+```‖an‖求Sn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:46:46
数列{an}中a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0求通项公式(2)设Sn=‖a1‖+‖a2‖+```‖an‖求Sn
数列{an}中a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0求通项公式(2)设Sn=‖a1‖+‖a2‖+```‖an‖求Sn
数列{an}中a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0求通项公式(2)设Sn=‖a1‖+‖a2‖+```‖an‖求Sn
a(n+2)-2a(n+1)+an=0
a(n+2)+an=2a(n+1)
所以该数列为等差数列
a4=a1+3d
2=8+3d
d=-2
an=a1+(n-1)d
=8-2(n-1)
=10-2n
an=10-2n>=0
n
(1)
a4=2a3-a2
a3=2a2-a1
a4=2(2a2-a1)-a2=3a2-2a1=3a2-2×8=3a2-16=2
3a2=18
a2=6
a2-a1=6-8=-2
a3=2a2-a1=2×6-8=12-8=4
(a3-a2)-(a2-a1)=(4-6)-(6-8)=0
a(n+2)=2a(n+1)-a...
全部展开
(1)
a4=2a3-a2
a3=2a2-a1
a4=2(2a2-a1)-a2=3a2-2a1=3a2-2×8=3a2-16=2
3a2=18
a2=6
a2-a1=6-8=-2
a3=2a2-a1=2×6-8=12-8=4
(a3-a2)-(a2-a1)=(4-6)-(6-8)=0
a(n+2)=2a(n+1)-an
a(n+2)-a(n+1)=a(n+1)-an=...=a2-a1=-2,为定值。
数列{an}是以8为首项,-2为公差的等差数列。
an=8-2(n-1)=10-2n
数列{an}的通项公式为an=10-2n
(2)
令10-2n≥0,解得n≤5,即数列前5项非负,从第6项开始,以后各项均<0。
n≤5时,Sn=a1+a2+...+an=10n -2(1+2+...+n)=10n -2n(n+1)/2=9n -n²
n≥6时,
Sn=a1+a2+...+a5-a6-a7-...-an
=-(a1+a2+...+an) +2(a1+a2+...+a5)
=-(9n-n²)+2×(9×5 -5²)
=n²-9n+40
收起
a(n+2)-2a(n+1)+an=0
a(n+2)-a(n+1)=a(n+1)-an
所以an等差
a1=8,a4=2,
d=-2
an=-2n+10
n=5时,an=0
因为sn=a1+a2+a3+a4+a5+(-a6)+(-a7)+```所以先让sn全部变负,再加上两倍的正的a1到a5,正好就是要求的
所以Sn=‖a1‖+‖a2...
全部展开
a(n+2)-2a(n+1)+an=0
a(n+2)-a(n+1)=a(n+1)-an
所以an等差
a1=8,a4=2,
d=-2
an=-2n+10
n=5时,an=0
因为sn=a1+a2+a3+a4+a5+(-a6)+(-a7)+```所以先让sn全部变负,再加上两倍的正的a1到a5,正好就是要求的
所以Sn=‖a1‖+‖a2‖+```‖an‖= -sn+2s5
sn=-(-n^2+9n)+2*20=n^2-9n+40
懂?
收起
由a(n+2)-2a(n+1)+an=0
得特征方程:m^2-2m+1=0
则m1=m2=1
则可令an=(c1+c2*n)*m1^n=c1+c2*n
则a1=c1+c2=8
a4=2=c1+c2*4=2
解得c1=10,c2=-2
则an=10-2n
则an为递减的等差数列,公差为-2
当n<=5时,an>=0,Sn=‖a1...
全部展开
由a(n+2)-2a(n+1)+an=0
得特征方程:m^2-2m+1=0
则m1=m2=1
则可令an=(c1+c2*n)*m1^n=c1+c2*n
则a1=c1+c2=8
a4=2=c1+c2*4=2
解得c1=10,c2=-2
则an=10-2n
则an为递减的等差数列,公差为-2
当n<=5时,an>=0,Sn=‖a1‖+‖a2‖+```‖an‖=a1+a2+……+an=na1+n(n-1)/2*(-2)=n(9-n)
当n>=6时,an<0,Sn=‖a1‖+‖a2‖+```‖an‖=S5+|a6+a7+……+an|=5*(9-5)+|a6|+(n-5)(n-5-1)/2*2=20+|10-2*6|+(n-5)(n-6)=n^2-11n+52
收起