求值域(1)y=1+x²/1+2x² x∈[-1,2] (2)y=3+2x²+2x/1+2x+x²(x>0)第一题改了:函数f(x)=在(-∞,+∞)上单调,求a的取值范围 (2)y=(3+2x²+2x)/(1+2x+x²)(x>0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 08:56:56
求值域(1)y=1+x²/1+2x² x∈[-1,2] (2)y=3+2x²+2x/1+2x+x²(x>0)第一题改了:函数f(x)=在(-∞,+∞)上单调,求a的取值范围 (2)y=(3+2x²+2x)/(1+2x+x²)(x>0)
求值域(1)y=1+x²/1+2x² x∈[-1,2] (2)y=3+2x²+2x/1+2x+x²(x>0)
第一题改了:
函数f(x)=
在(-∞,+∞)上单调,求a的取值范围
(2)y=(3+2x²+2x)/(1+2x+x²)(x>0)
求值域(1)y=1+x²/1+2x² x∈[-1,2] (2)y=3+2x²+2x/1+2x+x²(x>0)第一题改了:函数f(x)=在(-∞,+∞)上单调,求a的取值范围 (2)y=(3+2x²+2x)/(1+2x+x²)(x>0)
第一题:如图所示:(a>0)
f(x)=ax²+1 x≥0的图像大致如图所示
因为这个分段函数在R上单调,所以x=0时,
f(x)=
这个函数值必小于等于1,所以a²-1≤1
解之得:-√2≤a≤√2 因为a>0,所以0<a≤√2
若a<0时:同理这个函数值必大于等于1
a²-1≥1,即:a≥√2或a≤-√2
因为a<0,所以a≤-√2
综上所述,a的取值范围是:a≤-√2或0<a≤√2
第二题:由函数可知1+2x+x²显然不等于0,因此
原始变形为:(2-y)x²+(2-2y)x+(3-y)=0
因为x>0,根据一元二次方程根的判别式知:
△≥0且x1+x2=-b/a>0,x1x2=c/a>0
综合以上各式解之得:y≥5/3 1<y<2 y<2或y>3
因此5/3<y<2
值域为:(5/3,2)
1)y=(0.5+x^2+0.5)/(1+2x^2)=0.5+0.5/(1+2x^2)
当x=0时,1+2x^2最小,为1,此时y最大,为1
当x=2时,1+2x^2最大,为9,此时y最小,为5/9
所以y的值域为[5/9,1]
2) y=(2x^2+4x+2-2x+1)/(x+1)^2=2+(1-2x)/(x+1)^2
令t=x+1>-1
全部展开
1)y=(0.5+x^2+0.5)/(1+2x^2)=0.5+0.5/(1+2x^2)
当x=0时,1+2x^2最小,为1,此时y最大,为1
当x=2时,1+2x^2最大,为9,此时y最小,为5/9
所以y的值域为[5/9,1]
2) y=(2x^2+4x+2-2x+1)/(x+1)^2=2+(1-2x)/(x+1)^2
令t=x+1>-1
则(1-2x)/(x+1)^2=[1-2(t-1)]/t^2=(3-2t)/t^2=3/t^2-2/t=3(1/t-1/3)^2-1/3>=-1/3
当t=3时,上式最小为-1/3
因此y最小为2-1/3=5/3
y的值域为y>=5/3
收起