我的高数学的不好,1.拉格朗日中值定理的证明中用到的辅助函数是怎么来的?辅助函数是:F(x)=f(x)-{f(a)+[f(b)-f(a)]/(b-a)*(x-a)} 2.初等函数的求导过程(初等函数导函数的证明)谢谢~3.反函数的导

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 11:23:40
我的高数学的不好,1.拉格朗日中值定理的证明中用到的辅助函数是怎么来的?辅助函数是:F(x)=f(x)-{f(a)+[f(b)-f(a)]/(b-a)*(x-a)} 2.初等函数的求导过程(初等函数导函数的证明)谢谢~3.反函数的导
xUrF~5-w~N;qo2'ӌlQر͏q NHi[W$ /rWZxPrI2o9ykjx5*琵7K3:u)gިYq$-nd81FE~փ%ʹ-V~يe|یJ&~/ox]a]6Y7m/a"x3-9'V Lm>N~CRǩC|20>[X 6'69hs{o\mfYC c/[9Y'xJn:\K1ĬIK4}2AFGK".\otz:^.g&7"seX/WWWjձyea>@Xj,Xޮ哮ڸ{ӫ TW0I{%"0a+hTzzDh 2IpcBmڶK%JCTDpAyGEQy}axFU EZ[$C5%RKE0?ur";ZM +gUna #''`Tps+KG̏QʩT3Y͏ɬQ,F߃!;<77:%zV7Z^A -O@,< aݾi kX>wmZ' D5T$:HY |+kVk 5Ni'i<6 bO߇y\Gυr#]aģ!u㭱gUt D^ܕ }``/ ;]a#1^KH%<\S

我的高数学的不好,1.拉格朗日中值定理的证明中用到的辅助函数是怎么来的?辅助函数是:F(x)=f(x)-{f(a)+[f(b)-f(a)]/(b-a)*(x-a)} 2.初等函数的求导过程(初等函数导函数的证明)谢谢~3.反函数的导
我的高数学的不好,
1.拉格朗日中值定理的证明中用到的辅助函数是怎么来的?
辅助函数是:F(x)=f(x)-{f(a)+[f(b)-f(a)]/(b-a)*(x-a)}
2.初等函数的求导过程(初等函数导函数的证明)谢谢~
3.反函数的导数互为倒数,那以a为底x的对数与a的x次方为何不互为倒数呢?
知道的朋友还请多多回帖呀~

我的高数学的不好,1.拉格朗日中值定理的证明中用到的辅助函数是怎么来的?辅助函数是:F(x)=f(x)-{f(a)+[f(b)-f(a)]/(b-a)*(x-a)} 2.初等函数的求导过程(初等函数导函数的证明)谢谢~3.反函数的导
1.引入这个辅助函数是为了达到罗尔中值定理的条件F(a)=F(b)(你把a,b代入算出来都是F(x)都等于0),于是根据罗尔中值定理,在(a,b)上必有一点ξ满足F'(ξ)=0.对F(x)求导得到F'(x)=f'(x)-[f(b)-f(a)]/(b-a),即有F'(ξ)=f'(ξ)-[f(b)-f(a)]/(b-a)=0,所以有f(b)-f(a)=f'(ξ)(b-a)即拉格朗日中值定理.总之这个辅助函数有这两个条件:
1.F(a)=F(b)
2.由F'(ξ)=0能得到f(b)-f(a)=f'(ξ)(b-a),或者直接就是要满足F'(x)=f(x)-[f(b)-f(a)]/(b-a)
满足这两个条件的辅助函数就是F(x)=f(x)-{f(a)+[f(b)-f(a)]/(b-a)*(x-a)}
2.你看一下我的词条《导数表》,见参考资料
3.拿微分考虑
y=a^x,两边微分得到dy=a^xlnadx
dy/dx=a^xlna,dy/dx就是导数了,就是你习惯的y'
dx/dy就是反函数的导数,写明白点就是x=log(a)y的导数
我们看一下dx/dy的表达式:dx/dy=1/(lna*a^x)
显然a^x=y,我们代入dx/dy=1/(lna*a^x)得到dx/dy=1/(lna*y)
注意这里自变量为y,因变量为x,我们把自变量和因变量互换一下即得到习惯的函数形式y(x)=log(a)x,我们看到dx/dy=1/(lna*y)中x变y,y变x后有dy/dx=1/(lna*x),这就是对数函数的导数了.或许讲得有点乱,多想想应该就清楚了.