三角形ABC的三个顶点坐标为A(-2,0)、B(6,0)、C(0,-2根号3),抛物线Y=.ax平方+bx+c经过A、B、C三点,若抛物线顶点点为D在直线AC上是否存在一个P,使得三角形BDP的周长最小,若存在,求出P点坐标

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 01:56:52
三角形ABC的三个顶点坐标为A(-2,0)、B(6,0)、C(0,-2根号3),抛物线Y=.ax平方+bx+c经过A、B、C三点,若抛物线顶点点为D在直线AC上是否存在一个P,使得三角形BDP的周长最小,若存在,求出P点坐标
xX[OG++Uv^_! Z ?Edӷ 5dTU2pKJ! M1H)ήy/;3kDT塱s;١g׮/Ӥr'0+/OleY+IYCQ}a̔!%GCw]Jȹ-_5}\d 5=wcc !A aTgͽ<)$Hxq\>$ճ죕KĜS.񬣒!ų&9IYW"q)zq 39ќ/n) G$p:'a, ATVh:yA<%<7,AşƤO<"!w"Mnd;a+QDT\h|*˾pvw+>"u Ǧ%IrT%9/u1a_`YgsXbZ.d<պAPɫN'lBh~12Hnk̘^c;Q?YZRLW Մ3Z,JCHdZ>5gy;bp(vog浔uI@*Ak),ai;xYPp-1(x/>e[9 uAYk}q#s^^<n:_Q,IGc`t$"Axwp7.^y#F5|xVsB`D9&0طՄ3kiҜ_ pѥgAb -:a GYE9/X )< APA(튜WuE$)yuTHo+ò;;}2epIjƻwQ_ȄaH#/ёޔ2[^A~ku`UT1iDsz&jf+QA Zoa޵@:=Z<$$bѶF Ic?6\&.JGMgݤT.&|ߨ8XVt'؂]$.hraτAż\Q,E%[ep01X41giTԋo,m=(+k0^/XF&TUT̨KLL[ljg avAbmƭn̅oؕ`I2J|NO#()g dd@O!@lM 6( Y~ҋ nrZ25`tE )$qY>|6S$zalXHNcc~g}Q{K}oD@zHKT覄4SAl_QBc!*$ÖݽI%$.z@KI:AE/.ՂEo

三角形ABC的三个顶点坐标为A(-2,0)、B(6,0)、C(0,-2根号3),抛物线Y=.ax平方+bx+c经过A、B、C三点,若抛物线顶点点为D在直线AC上是否存在一个P,使得三角形BDP的周长最小,若存在,求出P点坐标
三角形ABC的三个顶点坐标为A(-2,0)、B(6,0)、C(0,-2根号3),抛物线Y=.ax平方+bx+c经过A、B、C三点,
若抛物线顶点点为D在直线AC上是否存在一个P,使得三角形BDP的周长最小,若存在,求出P点坐标

三角形ABC的三个顶点坐标为A(-2,0)、B(6,0)、C(0,-2根号3),抛物线Y=.ax平方+bx+c经过A、B、C三点,若抛物线顶点点为D在直线AC上是否存在一个P,使得三角形BDP的周长最小,若存在,求出P点坐标
你作B点关于AC直线的对称点E,即B点和E点关于直线AC是对称的,然后连接E和D,交点为P,这就是我们要求的点.所以,你只需要求出E的坐标,然后求直线AC和DE的交点即可

依题意有
0 = 4a - 2b + c
0 = 36a + 6b + c
-2√3 = b
解得 a = √3 / 2,b = -2√3,c = -6√3
抛物线 Y = √3 /2 X^2 - 2√3 X - 6√3 = √3 /2 (X^2 - 4X) - 6√3
= √3 /2 (X^2 - 4X + 4 - ...

全部展开

依题意有
0 = 4a - 2b + c
0 = 36a + 6b + c
-2√3 = b
解得 a = √3 / 2,b = -2√3,c = -6√3
抛物线 Y = √3 /2 X^2 - 2√3 X - 6√3 = √3 /2 (X^2 - 4X) - 6√3
= √3 /2 (X^2 - 4X + 4 - 4) - 6√3 = √3 /2 (X - 2)^2 - √3 /2 * 4 - 6√3
= √3 /2 (X - 2)^2 - 8√3
则 D(2,-8√3)
BD = √[ (6 - 2)^2 + (0 + 8√3)^2 ] = 4√13
设直线AC解析式为 Y = kX + b
则 0 = -2k + b
-2√3 = b
解得 k = - √3,b = -2√3
即 Y = -√3 X -2√3
则 P(X,-√3 X -2√3)
PB = √[(X - 6)^2 + (-√3 X -2√3 - 0)^2 ] = 2√(X^2 + 12)
PD = √[(X - 2)^2 + (-√3 X -2√3 + 8√3)^2 ] = 2√(X^2 -10X + 28)
L = PB + PD + BD
= 2√(X^2 + 12) + 2√(X^2 -10X + 28) + 4√13
= {√[2√(X^2 + 12)]}^2 + {√[2√(X^2 -10X + 28)]}^2 + 4√13
根据 a^2 + b^2 ≥ 2ab,当a = b时有最小值
则 √[2√(X^2 + 12)] = √[2√(X^2 -10X + 28)]
即 X^2 + 12 = X^2 -10X + 28
解得 X = 8/5,Y = -5√3 /8 - 2√3
则 P(8/5,-5√3 /8 - 2√3)

收起

三角形ABC的三个顶点坐标为A(-2,0)、B(6,0)、C(0,-2√3),抛物线Y=.ax²+bx+c经过A、B、C三点, 若抛物线顶点点为D在直线AC上是否存在一个P,使得三角形BDP的周长最小,若存在,求出P点坐标
先求抛物线方程:c=-2√3 (x=0时y=c=-2√3)
4a-2b-2√3=0...............(1)
36a+6b-2√3...

全部展开

三角形ABC的三个顶点坐标为A(-2,0)、B(6,0)、C(0,-2√3),抛物线Y=.ax²+bx+c经过A、B、C三点, 若抛物线顶点点为D在直线AC上是否存在一个P,使得三角形BDP的周长最小,若存在,求出P点坐标
先求抛物线方程:c=-2√3 (x=0时y=c=-2√3)
4a-2b-2√3=0...............(1)
36a+6b-2√3=0.............(2)
(2)-(1)得32a+8b=0,即b=-4a,代入(1)式得a=√3/6,b=-2√3/3
故解析式为 y=(√3/6)x²-(2√3/3)x-2√3=(√3/6)[x²-4x-12]=(√3/6)[(x-2)²-16]
顶点D(2,-8√3/3).
AC所在直线的方程为:y=(-√3)(x+2),即(√3)x+y+2√3=0.............(3),
斜率KAC=-√3.
点D到AC的距离d=│2√3-8√3/3+2√3│/2=2√3/3.
过D作AC的垂直线DF,垂足为F,并延长一倍到G,使FG=DF=2√3/3.那么G与D关与直线AC对称。垂线DF的方程为:y=(√3/3)(x-2)-8√3/3=(√3/3)(x-10),设G点的坐标为(m,(√3/3)(m-10))
点G到直线AC的距离=│(√3)m+(√3/3)(m-10)+2√3│/2=(2√3/3)│(m-1)│=2√3/3,m-1=-1
故m=0,于是得G点的坐标为(0,-10√3/3).
连接BG,则BG所在直线的方程为:y=(5√3/9)(x-6)..................(4)
BG与AC的交点就是所要求的P,为此将(3)(4)联立求解:
由-(√3)(x+2)=(5√3/9)(x-6)即得x=6/7,y=-20√3/7,即P点的坐标为(6/7,-20(√3)/7).
此时△BDP的周长最小。
证明:∵AC是GD的垂直平分线,∴PD=PG,于是△BDP的周长=BP+PD+DB=BG+DB
如果点P不在现在的位置而是在P₁的位置(P₁仍在AC上),那么P₁D=P₁G,
而P₁G+P₁B>BG,故△P₁DB的周长=P₁D+P₁B+DB=P₁G+P₁B+DB>BG+DB

收起

可以证出∠ACO=30°,∠OBC=30°,所以∠BCA=90°,B点关于AC直线的对称点B撇,B O B撇在同一直线上;作B撇E⊥y轴于E,能证出来三角形BOC≌于三角形B撇EC,所以B撇(-6,-4倍根号3),求出AC解析式和DB撇解析式,然后建立方程组,解就是答案

一个正三角形ABC的三个顶点的坐标为A(0,0)B(-4,0),C(-2,2根号3),将三角形ABC绕原点顺时针旋转120度后,三角形ABC的三个顶点坐标分别是? 一个正三角形ABC的三个顶点的坐标为A(0,0)B(-4,0),C(-2,2根号3),一个正三角形ABC的三个顶点的坐标为A(0,0)B(-4,0),C(-2,2根号3),将三角形ABC绕原点顺时针旋转120度后,三角形ABC的三个顶点坐标分别是? 三角形ABC的三个顶点A.B.C的坐标分别为(-2,5),(-6,-2),(0,-1)求三角形ABC的面积 如图三角形ABC的三个顶点坐标分别为A(-2,3),B(-4,-1),C(2,0)求三角形ABC的面积 已知三角形ABC三个顶点的坐标分别为A(4,3)B(5,2)C(1,0),求三角形ABC的外接圆方程 已知三角形ABC三个顶点坐标为A(-2,2)B(5,4)C(-3,0)求三角形ABC的面积 已知三角形ABC的三个顶点坐标分别为A(2,3,1),B(4,1,-2),C(6,3,7)则三角形ABC的重心坐标为, 已知三角形ABC三个顶点的坐标分别为A(2,1)B(1,0)c(3,0),求角B的正弦值,和三角形的面积 三角形的三个顶点坐标分别为A(-2,0),B(2,0),C(1,根号3),则三角形ABC外接圆的方程如题 已知三角形ABC的三个顶点坐标分别为A(-2,0)、B(6,-2)、C(1,6),试求此三角形面积 已知三角形三个顶点坐标A(-1,3)B(-3,0)C(1,2求三角形ABC的面积S 1.已知三角形ABC的三个顶点坐标为A(1,2),B(2,3),C(-2,5)求cosA 三角形ABC的三个顶点的坐标为A(-5,2)·B(1,2)·C(3,-1),则三角形ABC的面积为 三角形ABC三个顶点的坐标分别为A(-3,-1),B(2,-1),c(1,3),则三角形ABC的面积为 三角形ABC三个顶点A、B、C的坐标分别为A(2,-1)B(1,-3)C(4,-5)求三角形ABC的面积 已知三角形abc的三个顶点坐标分别为a(-5,2) b(1,2) c(10,3)求证三角形abc为直角三角形 已知平面直角坐标系内,o为坐标原点,三角形abc的三个顶点分别为a(0,8),b(7,1),c(-2,1). 已知三角形ABC三个顶点坐标为A(3,4)B(6,0)C(-5,-2),求角A的角平分线AT所在直线方程